

Image/Video Processing and Coding

Dr.-Ing. Henryk Richter Institute of Communications Engineering Phone: +49 381 498 7303, Room: W 8220 EMail: henryk.richter@uni-rostock.de

Content

- Introduction
- Colors, Image Matrix, Image Processing and Recognition structure
- Image Sampling and Quantization
- Discrete Image Characteristics
- Image Transformation
- Image Improvement
- Image Segmentation
- Features, Extraction, Descriptors
- Pattern Recognition (Basics, Systems for classification, Neural Networks)
- Data compression fundamentals
- Methods, techniques and algorithms for data compression
 - Data reduction, Coding, Decorrelation
- Image and Video coding standards and their specifics
 - JPEG, JPEG-2000
 - Video Coding: H.265

Introduction

- joint project JVT of the ITU-T VCEQ and MPEG
- nomenclature
 - ITU-T Rec. H.265
 - ISO/IEC 23008-2 HEVC
- development based on H.264/AVC
- specifically targeted at UHDTV video resolution (4k,8k)
 - >8 Bit per pixel included in initial specification (8 Bit or 10 Bit, RXext provides 14 Bit per component)
 - YCbCr subsampling 4:2:0 (in addition, 4:0:0, 4:2:2 and 4:4:4 in RXext)

Key Changes in comparison to H.264

- Coding Tree Units (CTU) as replacement for the traditional 16x16 Macroblock
 - 16x16,32x32 or 64x64 luma samples per CTU
- Prediction Units (PU)
 - adaptive subdivision of CTU sized blocks as needed
- Transform Units (TU)
 - adaptive subdivision of CTU sized blocks as needed
 - 4x4,8x8,16x16 and 32x32 transform sizes (quantized DCT), 4x4 quantized DST
 - transform block sizes decoupled from PU sizes
- Advanced Motion Vector prediction
 - more MV prediction candidates compared to earlier standards
 - merge mode for MV coding
 - improved "skipped" and "direct" motion inference
- single-stage Motion Compensation
 - 7-tap or 8-tap filters for interpolation (instead of 6-tap plus bilinear interpolation)
- Intra Prediction with 35 different modes (33 directional, DC, Plane)
- Sample-Adaptive Offset (SAO)
 - non-linear amplitude mapping by lookup-table after the deblocking filter, parameters from bitstream
- Parallel Encoding Decoding support
 - Tiles, Wavefront Parallel Processing (including Entropy decoding), Dependent Slices
- Clean Random Access (CRA)
 - Open GOP principle, start with a temporal independent picture (RAP) and discard non-decodable pictures

Profiles / Levels

- initially only the Main Profile was specified for the first version of HEVC
 - acknowledgement that traditionally separate services (broadcast, mobile, streaming) converge toward multipurpose receiver devices
 - restrictions
 - only 8 Bit video with 4:2:0 chroma sampling
 - usage of tiles excludes wavefront parallel processing
 - tiles must be at least 256 x 64 luma samples large
- 13 Levels for initial specification
 - Level 1-3: SDTV resolution and below
 - Level 3.1: up to 720p @ 33 FPS
 - Level 4,4.1: HDTV 1080i/p @ 30,60 FPS
 - Level 5,5.1,5.2: 4k @ 30,60,120 FPS
 - Level 6,6.1,6.2: 8k @ 32,64,128 FPS
 - max. 6 pictures in decoded picture buffer (DPB) at maximum pixel count allowed in level, total limit of 16 pictures in DPB

High Level Syntax

- Concepts from H.264 retained
- Network Adaptation Layer (NAL)
 - encapsulation of VCL (video coding layer) units into various transport layers (RTP, ISO MP4, MPEG-2 Systems)
- NAL units classified into VCL and non-VCL
 - VCL NAL types
 - used for different picture categories (especially random access markers)
 - temporal scalability (temporal sub-layers)
 - non-VCL NAL types
 - parameter sets
 - sequence/bitstream delimiting
 - SEI messages
 - supplemental enhancement information for parameters not directly associated with bitstream decoding
 - aspect ratio, cropping, interlace support

Picture Random Access

- Traditional video coders required to start decoding with I-frames (or IDR in H.264)
 - Closed GOP concept, where each GOP starts with I/IDR pictures and implicitly invalidates the reference picture buffer immediately
- HEVC Decoders can start at different random access point (RAP) pictures

Traditio et Innovatio

- IDR = Instantaneous Decoder Refresh
- CRA = Clean Random Access
- VLA = Broken Link Access
- Clean Random Access (CRA) syntax
 - Intra pictures (CRA) at the location of a random access point (RAP) to start successful decoding without the knowledge of prior pictures in the bitstream
 - Pictures following CRAs in decoding order and precede them in display order are discarded by decoders starting with CRA pictures (TFD=tagged for discard NAL unit types)
- Broken Link Access (BLA)
 - bitstream splicing, i.e. switch from one bitstream to another
 - BLA NAL units signal a disrupted picture numbering to the decoder

Frame subdivision concepts

- Slices
 - Slices consist of a sequence of CTUs
 - Arbitrary number of CTUs per slice
 - Slices can be decoded independently*
- Tiles
 - Wimplified version of the H.264 FMO framework
 - Rectangular groups of CTUs (typically same size)
 - Independent decoding
 - Each tile may contain a variable number of slices (also possible are multiple tiles within a single slice)
- Dependent Slices
 - Slices that depend on a particular decoding order of other slices (e.g. Wavefront entry points for parallel processing)

Slic	e 0				
		Slic	e 1		
			Slic	e 2	

Coding Blocks and Prediction Blocks from Coding Tree Units

- CTUs >16x16 are the key feature of H.265 towards higher coding efficiency
- Quadtree decomposition of CTUs into smaller Coding Blocks (CB)

Traditio et Innovatio

- In Intra CUs, each CB may be (optionally) further subdivided into 4 quadrants, where each quadrant is assigned a distinct intra prediction mode (min. size 4x4)
- In Inter CUs, the CB may be (optionally) subdivided into two prediction blocks (PB), or into four PBs when the CB size is at the minimum allowed CB size

H.265 / HEVC system architecture

Quelle: HHI Berlin

Institut für Anti-

Intra Prediction

- Smoothed predictors from directly adjacent neighbors (left, above the current block)
- Square sizes from 4x4 ... 32x32 luma pixels
- Intra_Angular Prediction with 33 different directions of prediction
 - non-uniform angles in directional modes: denser mode coverage for near vertical and near horizontal prediction angles
 - for a block size of NxN, 4N+1 spatially neighboring samples are used
 - bi-linear interpolation with 1/32 sample accuracy
- Intra_Planar
 - four corner reference samples, average of two linear projections
- Intra_DC Prediction
 - average of predictor samples copied to the whole block
- additional boundary smoothing for DC, horizontal, vertical
- by selecting an index from the 3 most probable modes or 5 bit FLC

Motion Compensation - Luma

- Single-stage interpolation process
 - MPEG-4 and H.264 required multiple computation passes
 - HEVC result is available after just two interpolation filter steps (horizontal+vertical)
- Separable horizontal and vertical filters
- 7 filter taps (half-pel positions) or
 8 filter taps (quarter pel positions)
- 16 Bit word accuracy sufficient for computation

		1			
A 0,0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a b 0,0 0,0 e f 0,0 0,0 i j 0,0 0,0 0,0 0,0 a b 0,1 0,1	C 0,0 0,0 K 0,0 r 0,0 C 0,1	A 1,0 A 1,0 A 1,0 A 1,0 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,0 1,0 A	A 2,0 d 2,0 h 2,0 n 2,0 A 2,1 A 2,1	A 3,0 d 3,0 h 3,0 n 3,0 A 3,1
	a b 0,2	C 0,2			A 3,2
	a b 0,3 0,3	C 0,3			
	A 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	A a b 0,0 0,0 0,0 d e f 0,0 0,0 0,0 h i j 0,0 0,0 0,0 h i j 0,0 0,0 0,0 A a b 0,1 0,1 0 A a b 0,1 0,2 0,2 A a b 0,2 0,3 0,3	A a b C 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3 0,3 0,3	A a b C A I I I 0,0 0,0 0,0 0,0 0,0 1,0 I I h i j k h I I I I h i j k h I I I I I n p q r n n I	A a b c A a A a b c A a

Motion Compensation - Luma (2)

Filter Coefficients	index	-3	-2	-1	0	1	2	3	4
	hfilter[i]	-1	4	-11	40	40	-11	4	1
	qfilter[i]	-1	4	-10	58	17	-5	1	

• First stage (*B* is bits per pixel)

$a_{0,j} = ($	$\sum_{i=-33}$	$A_{i,j}$	qfilter[i]) >> (B-8)
$b_{0,j} = \Big($	$\sum_{i=-34}$	$\mathbf{A}_{i,j}$	hfilter[i]	>>(B-8)
$c_{0,j} = \left(\begin{array}{c} c_{0,j} \end{array} \right)$	$\sum_{i=-24}$	$\mathbf{A}_{i,j}$	qfilter $[1-i]$) >> (B-8)
$d_{0,0} = \Big($	$\sum_{j=-33}$ A	$\mathbf{h}_{0,j}$	qfilter[j]) >> (B-8)
$h_{0,0} = \Big($	$\sum_{j=-34}$ A	$1_{0,j}$	hfilter[j]	>>(B-8)
$n_{0,0} = ($	$\sum_{j=-24}$ A	0, <i>j</i>	qfilter $[1-j]$) >> (B-8)

- Third stage: optionally, the interpolation process is followed by weighted prediction (like H.264, only explicit mode supported)
- for bi-directional prediction, interpolated results are added together
- last: rounding/clipping to $[0,2^{B}-1]$ is performed

Second Stage

		•		
$e_{0,0} = ($	$\Sigma_{j=-33}$	$a_{0,j}$	qfilter $[j]$) >> 6
$f_{0,0} = ($	$\sum_{j=-33}$	$b_{0,j}$	qfilter $[j]$) >> 6
$g_{0,0} = ($	$\sum_{j=-33}$	$c_{0,j}$	qfilter $[j]$) >> 6
$i_{0,0} = ($	$\Sigma_{j=-34}$	$a_{0,j}$	hfilter [j]	>>6
$j_{0,0} = ($	$\Sigma_{j=-34}$	$b_{0,j}$	hfilter [j]	>>6
$k_{0,0} = ($	$\Sigma_{j=-34}$	$c_{0,j}$	hfilter [j]) >> 6
$p_{0,0} = ($	$\Sigma_{j=-24}$	$a_{0,j}$	qfilter $[1-j]$) >> 6
$q_{0,0} = ($	$\Sigma_{j=-24}$	$b_{0,j}$	qfilter $[1-j]$) >> 6
$r_{0,0} = ($	$\Sigma_{j=-24}$	$c_{0,j}$	qfilter $[1-j]$) >> 6

x>>n operator: arithmetic right shift (x/2ⁿ)

Motion Compensation - Chroma

- Chroma MC is 1/8 pel resolution in YCbCr 4:2:0
- 4 tap FIR filter, indices 5-7 are the mirrored indices 3-1
- horizontal / vertical filtering separately, depending on fractional position
- workflow in analogy to Luma MC

index	-1	0	1	2
filter1[i]	-2	58	10	-2
filter2[<i>i</i>]	-4	54	16	-2
filter3[<i>i</i>]	-6	46	28	-4
filter4[<i>i</i>]	-4	36	36	-4
filter5[<i>i</i>]	-4	28	46	-6
filter6[<i>i</i>]	-2	16	54	-4
filter7[<i>i</i>]	-2	10	58	-2

Motion Compensation - reference frames

- each motion vector is assigned a reference frame index Δ
- reference frames kept on encoder and decoder side
- in bi-directional prediction: two sets of motion vector parameters (list0,list1)
- sorting of reference frames by Picture Order Count (POC)
- ordering transmitted in the slice header (RPS=reference picture set)
- simplified and more robust syntax compared to H.264

Motion Compensation - Merge Mode Motion Inference

- Multiple motion vector prediction candidates in spatial and temporal directions
 - Generalization and extension of the concepts toward DIRECT and SKIP modes in earlier standards
 - Multi-hypothesis motion information
- Temporal motion candidates are stored with a granularity of 16x16 for memory efficiency
- Set of motion vector prediction candidates
 - spatial neighbor candidates
 - based on availability and PU location
 - limit towards the number can be signaled so that only the first candidates are retained
 - temporal candidate from collocated reference picture
 - index explicitly transmitted to decide which reference frame list
 - generated candidates
 - pre-defined list of usual motion vectors, included into merge candidate list for B-Slices
 - zero (0,0) vectors appended to the list for P-Slices
- Candidate list is pruned to remove redundant entries
- For each PU, the index into the candidate list is transmitted
- Similar multi-hypothesis approach to non-merge motion prediction (limited set)

Residual Transform

- Integer DCT approximation for 4x4,8x8,16x16,32x32 transform sizes
 - One-dimensional transform in horizontal and vertical directions, followed by 7 Bit shift, along with 16 Bit clipping to fit all intermediately stored data into 16 Bit
 - Each PU can be either transformed directly as 1 TB or subdivided into 4x4 TBs
- Core transform *H*, as given in the standard:

	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64	64
	90	90	88	85	82	78	73	67	61	54	46	38	31	22	13	4	-4	-13	-22	-31	-38	-46	-54	-61	-67	-73	-78	-82	-85	-88	-90	-90
	90	87	80	70	57	43	25	9	-9	-25	-43	-57	-70	-80	-87	-90	-90	-87	-80	-70	-57	-43	-25	-9	9	25	43	57	70	80	87	90
	90	82	67	46	22	-4	-31	-54	-73	-85	-90	-88	-78	-61	-38	-13	13	38	61	78	88	90	85	73	54	31	4	-22	-46	-67	-82	-90
	89	75	50	18	-18	-50	-75	-89	-89	-75	-50	-18	18	50	75	89	89	75	50	18	-18	-50	-75	-89	-89	-75	-50	-18	18	50	75	89
	88	67	31	-13	-54	-82	-90	-78	-46	-4	38	73	90	85	61	22	-22	-61	-85	-90	-73	-38	4	46	78	90	82	54	13	-31	-67	-88
	87	57	9	-43	-80	-90	-70	-25	25	70	90	80	43	-9	-57	-87	-87	-57	-9	43	80	90	70	25	-25	-70	-90	-80	-43	9	57	87
	85	46	-13	-67	-90	-73	-22	38	82	88	54	-4	-61	-90	-78	-31	31	78	90	61	4	-54	-88	-82	-38	22	73	90	67	13	-46	-85
	83	36	-36	-83	-83	-36	36	83	83	36	-36	-83	-83	-36	36	83	83	36	-36	-83	-83	-36	36	83	83	36	-36	-83	-83	-36	36	83
	82	22	-54	-90	-61	13	78	85	31	-46	-90	-67	4	73	88	38	-38	-88	-73	-4	67	90	46	-31	-85	-78	-13	61	90	54	-22	-82
	80	9	-70	-87	-25	57	90	43	-43	-90	-57	25	87	70	-9	-80	-80	-9	70	87	25	-57	-90	-43	43	90	57	-25	-87	-70	9	80
	78	-4	-82	-73	13	85	67	-22	-88	-61	31	90	54	-38	-90	-46	46	90	38	-54	-90	-31	61	88	22	-67	-85	-13	73	82	4	-78
	75	-18	-89	-50	50	89	18	-75	-75	18	89	50	-50	-89	-18	75	75	-18	-89	-50	50	89	18	-75	-75	18	89	50	-50	-89	-18	75
	73	-31	-90	-22	78	67	-38	-90	-13	82	61	-46	-88	-4	85	54	-54	-85	4	88	46	-61	-82	13	90	38	-67	-78	22	90	31	-73
	70	-43	-87	9	90	25	-80	-57	57	80	-25	-90	-9	87	43	-70	-70	43	87	-9	-90	-25	80	57	-57	-80	25	90	9	-87	-43	70
H =	67	-54	-78	38	85	-22	-90	4	90	13	-88	-31	82	46	-73	-61	61	73	-46	-82	31	88	-13	-90	-4	90	22	-85	-38	78	54	-67
	64	-64	-64	64	64	-64	-64	64	64	-64	-64	64	64	-64	-64	64	64	-64	-64	64	64	-64	-64	64	64	-64	-64	64	64	-64	-64	64
	61	-73	-46	82	31	-88	-13	90	-4	-90	22	85	-38	-78	54	67	-67	-54	78	38	-85	-22	90	4	-90	13	88	-31	-82	46	73	-61
	57	-80	-25	90	-9	-87	43	70	-70	-43	87	9	-90	25	80	-57	-57	80	25	-90	9	87	-43	-70	70	43	-87	-9	90	-25	-80	57
	54	-85	-4	88	-46	-61	82	13	-90	38	67	-78	-22	90	-31	-73	73	31	-90	22	78	-6/	-38	90	-13	-82	6l	46	-88	4	85	-54
	50	-89	18	/5 54	-/5	-18	89	-50	-50	89	-18	-/5	/5	18	-89	50 70	50	-89	18	/5	-/5	-18	89	-50	-50	89	-18	-/5	/5	18	-89	50
	40	-90	38 57	54	-90	31	61	-88	22	6/	-85	13	13	-82	4	/8	-/8	-4	82	-/3	-13	85	-6/	-22	88	-61	-31	90	-54	-38	90	-46
	43	-90	ן כ בד	25	-8/	/0	9	-80	80 95	-9 70	-70	8/ 61	-25	-5/	90	-43	-43	90	-57	-25	8/	-/0	-9 70	80	-80	9	/0	-8/	25	ן כ כד	-90	43
	20 26	-88	13	-4	-07	90	-40	-31	83 26	-/8	13	01	-90	34 92	22	-82	82 26	-22	-34	90	-01	-13	/8	-83	26	40	-90	0/	4	-/3	00 02	-38
	30 21	-85 78	83 00	-30	-30	83 54	-83	30 82	30 28	-85	83 72	-30	-30 67	03 12	-83	30 85	30 85	-83 16	03 12	-30	-30	03 72	-83	30 29	30 82	-83 00	83 54	-30	-30	83 00	-85 78	30 21
	25 25	-78	90	-01	4	0	-00 57	02 87	-30	-22 57	/5	-90	07 80	-15	-40 70	0.) 25	-63	40 70	15	-07	90	-/5	22 57	20 97	-02 97	00 57	-34	-4 12	80	-90	/ 0 70	-51
	25	-70	90	-80	43	9 29	-37	07 46	-07	00	-9	-43 54	12	-90	67	-23	-23 00	67	-90	00 12	-43 54	-9	57	-0/ 78	07	-37	20	43	-80	90	-70 61	23
	18	-01	85 75	-90 80	73 80	-38 75	-4 50	40	-/8 18	90 50	-02 75	34 80	-13 80	-31	50	-00 18	00 18	-07	75	13	-34 80	02 75	-90	/0	-40 18	4 50	30 75	-75	90 80	-85 75	50	18
	13	-38	61	-09	88	_90	30 85	-10	-10 54	_31	-75	22	-09	67	-30	00	_00	82	-67	-69	_22	-75 -4	31	-10	73	_85	00	_88	-02	-61	38	_13
	9	- <u>-</u> 25	43	-57	70	-80	87	_90	90	-87	80	-70	57	_43	25	_9	_90	25	_43	57	-22 -70	80	_87	90	_90	-05 87	-80	-00 70	-57	_01 	_25	0
	4	-13		_31	38	-46	54	-61	67	_73	78	-82	85	-88	90	_90	90	_90	88	-85	82	_78	73	-67	61	_54	46	-38	31	_22	13	_4
	-	-15		-51	50	-+0	54	-01	07	-15	10	-02	05	-00	90	-90	90	-90	00	-05	02	-70	15	-07	01	-94	-10	-50	51	-22	15	

Residual Transform (2)

- Matrices $H^{(16)}$, $H^{(8)}$, $H^{(4)}$ can be obtained from H by extracting each 2nd, 4th, 8th row/ column, respectively
- Recursive and partially factored implementation possible instead of straight-forward (and computationally expensive) matrix multiplication
- Mode-dependent alternative transform
 - Only Intra 4x4 transform can be selectively performed by an alternative algorithm
 - Integer DST (discrete sine transform)
 - observation that the prediction error increases with the distance from the border samples used as predictors
 - approx. 1% bit rate reduction in intra-predictive coding

Traditio et Innovatio

$$H = \begin{vmatrix} 29 & 55 & 74 & 84 \\ 74 & 74 & 0 & -74 \\ 84 & -29 & -74 & 55 \\ 55 & -84 & 74 & -29 \end{vmatrix}$$

Coefficient Scanning, Quantization, Entropy Coding

- Coefficient Scanning, Block coding
 - three different coefficient scanning methods: diagonal, horizontal, vertical
- Quantization
 - Applied transforms are scaled orthonormal DCT/DST
 - Frequency uniform Quantization/Reconstruction
 - QP 0...51 (like H.264), logarithmic step size
- Entropy Coding
 - CABAC (from H.264) as single supported coding method
 - Modified context modeling, significant reduction in context models compared to H.264
 - Higher use of the bypass-mode in CABAC in order to reduce the computational demands
 - Last nonzero coefficient signaling, significance map, sign bit and level encoding concepts similar to H.264
 - Significance map grouped for multiple 4x4 blocks

In-loop Filters

- Two post-processing filter steps in HEVC
- Deblocking Filter (DBF)
 - similar in concept to H.264 deblocking filter
 - low pass filtering of decoded frames for improved visual appearance and <u>improved</u> <u>coding efficiency</u>, reduction of block artifacts
 - significant reduction in complexity compared to H.264 approach
 - multi-processing friendly
- Sample adaptive offset (SAO)
 - applied after the Deblocking Filter
 - Suppression of "banding artifacts" from strong quantization as well as "ringing artifacts" from quantization errors of high frequency components
 - Signaling of SAO parameters flexible, ranging from one parameter specification (over the whole picture) down to a fine granularity on CU level

Deblocking Filter

- Applied on TU and PU boundaries (not necessarily the same)
- 8x8 sample grid for luma and chroma (H.264: 4x4/2x2)
- 3 different strengths for luma
 - 0 no filtering
 - 1 regular filtering for motion compensated blocks (practically the same rules as in H.264 apply)
 - 2 strong Intra filtering if any neighboring block is Intra
- Chroma shares the decisions, yet only two modes (on,off) are defined
- HEVC processing order of DBF is horizontal filtering (vertical edges) first over the whole picture, followed by vertical filtering (horizontal edges)
 - inherently multi-processing friendly

DBF Impact: 176x144, QP36, GOP-Length 32, 30 kBit/s DBF off DBF on

Sample adaptive offset

Four gradient patterns in SAO: current pixel p, neighboring pixels n₀,n₁

 n_0

Traditio et Innovatio

N0

- Syntax element sao_type_idx controls the SAO operation for the current coding tree blocks (CTB, one luma or chroma component of a CTU), either
 - 0 = off
 - 1 = band offset type
 - central band, side band
 - offset depends on sample amplitude (amplitude range divided into 32 bands, sample values of four consecutive bands are modified as band offsets)
 - 2 = edge offset type
 - additional parameter: direction in which the gradient strengths are to be evaluated
 - gradient evaluation and classification done in encoder and decoder
 - encoder sends the appropriate offsets to the decoder for each CTB (positive values only for 1,2, negative values only for 3,4)

Offsets are added to considered pixels within a coding tree block (luma/chroma) via look-up tables

SAO Impact: 448x256, QP40, GOP-Length 32, 80 kBit/s

Traditio et Innovatio

SAO off

SAO on

 Contrast enhanced difference image

Further Development

- RXext Range Extensions
 - Higher pixel depth >10 Bits / sample
 - Additional chroma formats (4:2:2,4:4:4,4:0:0)
 - Additional Channels (e.g. Alpha)
- Scalability Extensions (SHVC)
 - temporal scalability is already part of HEVC v1
 - spatial and SNR scalability
 - multi-loop coding framework (requires decoding of current and all lower layers)
- 3D Video Extensions
 - MV-HEVC (direct sibling to H.264 MVC)
 - Multiview HEVC with modified Block-Level Tools
 - higher compression efficiency than MV-HEVC, backwards compatible to HEVC
 - v1, yet new tools for additional views
- Hybrid Architectures
 - Legacy Base Layer (H.264, H.262) with HEVC enhancement layer

(JM12.4)

Image Quality H.264 vs. H.265

Foreman QCIF, first picture (Intra)

 H.265, 9208 Bits, Y-PSNR 32.4 dB, (HM16.6)

© 2009 UNIVERSITÄT ROSTOCK | FAKULTÄT INFORMATIK UND ELEKTROTECHNIK H. Richter - Image/Video Processing and Coding

Literature

 [SOHW12] G. J. Sullivan, W.J. Han, T. Wiegand, Overview of the High Efficiency Video Coding (HEVC) Standard, IEEE Transactions on Curcuits and Systems for Video Technology, Vol. 22, 1649–1668, Dec 2012

Traditio et Innovatio

- [SBCOSV13] G. J. Sullivan, J. M. Boyce, Y. Chen, J.R. Ohm, C. A. Segall, A. Vetro, Standardized Extensions of High Efficiency Video Coding (HEVC), IEEE Journal of selected topics in signal processing, Vol. 7, No. 6, 1001-1007, Dec 2013
- Reference software: <u>https://hevc.hhi.fraunhofer.de/</u>
- Free implementation: <u>http://x265.org</u>