
MMP16
A 16-bit Didactic Micro-Programmed Micro-Processor

José Luis López Presa
Department of Telematic Engineering and Architecture

Polytechnic University Madrid
Madrid, Spain

jllopez@diatel.upm.es

Elio Pérez Calle
EU Science and Technology Fellowship Programme

University of Science and Technology of China
Hefei, Anhui, China

elio@ustc.edu.cn

Abstract— MMP16 stands for 16-bit Didactic Micro-
Programmed Micro-Processor and consists in a comprehensive
learning tool for those students of electric engineering and
related disciplines that, having studied the basics of digital
electronics, need to understand the principles of computer
organization prior to study advanced computer architecture.
Therefore, MMP16 has been designed as a bridge between the
study and use of digital electronic components and a full
implementation of a digital microprocessor. MMP16 is a
powerful tool not only to depict the basic concepts of a
microprocessor layout and operation, but also to instruct
advanced concepts such as pipelining. Besides the theoretical
approach, MMP16 may be used as a software developing tool,
allowing the students to develop and test their own
microprograms using the simulation software provided.
MMP16 is currently being used in the Universidad Politécnica
de Madrid (UPM) and its deployment is under study in several
European and Chinese universities.

Keywords- Principles of Computer Organization, Computer
Architecture, Computer Simulation, Didactic Tools.

I. MOTIVATION
As some authors point out [1], although today most

students start undergraduate courses having already had
contact with computers as users, computer organization and
architecture involves many abstract concepts for those
undergraduate beginners. Therefore, most of them might
understand the computer as the tool they use for Internet
browsing and social networking on a daily basis. In this
situation, professors are required to fill an enormous gap
between the end-user approach of students and the principles
of computer organization, whose concepts are completely
new to them.

This gap is caused by the increasing number of
abstraction layers interposed between the hardware and end-
user oriented applications. A depiction of this can be found
in [2], where Tanenbaum defines a 6-tier structure present in
modern computers1, going from the digital logic level to the
problem-oriented language level, as shown in Fig. 1.
MMP16 is focused on the second level of this hierarchy

1 Nowadays, microprogramming is not as popular as it used to be, since

RISC computers do not need a sophisticated control unit.

(microprogramming level) and requires the students to have
basic knowledge of circuit theory and elemental digital
components, such as logic gates, multiplexers, decoders,
adders, registers, and so on, as defined in most electrical and
electronic engineering and computer science and engineering
undergraduate curricula.

The motivation behind the design of MMP16 is to link
digital electronics with computer architecture and, therefore,
show the students how a computer can be built using the
simple components they already know.

Furthermore, the use of a working example is the best
way to understand the key concepts of computer organization.
Based on the excellent theoretical approach developed by
some authors [2] [3] [4], MMP16 provides not only the
design of a microprogrammed microprocessor aimed at
learning purposes, but also non-commercial software to be
used in laboratory classes. This approach overcomes the
limitation of available commercial software, and particularly
the time-consuming learning of the program interface by the
students and the orientation towards professional
applications [5] [6] [7]. On the contrary, MMP16 is
completely focused on learning, in both theoretical and
practical skills.

Figure 1: Computing levels defined by Prof. Andrew Tanenbaum.

978-1-61284-840-2/11/$26.00 ©2011 IEEE

61

II. DESIGN
MMP16 has been designed with a strong emphasis on the

principles of computer organization, and therefore the
processor is neither complex nor modern. Nevertheless, the
model is complex enough to allow the student to learn the
basics of the design of a simple processor, and to introduce
them to advanced concepts such as pipelining. The design is
focused on the CPU, as the main goal of MMP16 is to
consolidate the student´s knowledge about CPU inner
organization and instruction sequencing. MMP16 covers the
main principles of computer organization and provides the
students enough understanding of the structure of a computer
to be able to tackle more advanced concepts and techniques
such as the massive use of pipelining, parallel processing, etc.

Fig. 2 shows the full simulated system formed by
MMP16 and a 64K 16-bit memory. In order to achieve the
highest simplicity, a byte word cannot be addressed. Every
memory address is a 16-bit word and both the address and
the data buses are also 16-bit wide, following the design
pattern that makes 16-bit the standard for this processor.

MMP16 has the following external signals: r, indicating
reading of a memory position; w, indicating writing; ready,
that is used by the memory to indicate the processor that the
memory operation has concluded; and reset, that allows to
reset the machine. It loads the fixed 0xFFFE address into the
Program Counter and starts a FETCH cycle. At that memory
address, a jump instruction is expected to be found. A ROM
coded program detailing startup instructions should be stored
here –usually the BIOS program, that would access the hard
disk lo load the operating system or perform a network start.
There is also an interruption petition line (int), that can be
used by Input/Output (IO) devices, though in this version of
MMP16, no IO devices are included. MMP16 is designed to
use memory mapped IO, hence it does not need any extra
signals for IO operations.

Like any processor, MMP16 has a Control Unit, and a
Data Processing Unit. MMP16 uses two different clock
signals: �1 is used for the Control Unit and defines the
machine states, and �2 is used to load the registers of the
Data Processing Unit and synchronize the memory signals
and buses.

Figure 2: General description of MMP16.

III. ORGANIZATION AND ARCHITECTURE

Figure 3: Organization and Architecture of MMP16.

Fig. 3 shows the block diagram of MMP16. The

organization is based on an internal data bus (IDB)
interconnecting the functional blocks of MMP16. For the
sake of simplicity, the registers of the Data Processing Unit
and the IDB have 16 bits.

The fact that MMP16 is not able to address bytes
(commonly used to represent characters) may be considered
an important limitation, but nowadays it is very common to
work with 16-bit charsets, such as the Guobiao system for
Chinese characters.

MMP16 has a register array of 16 registers (R0, R15).
R14 is the stack pointer (SP) and R15 is the program counter
(PC), as shown in Fig. 4. Registers may be addressed in two
ways: using directly some operand fields of the Instruction
Register (IR), or using specific microorders generated by the
control unit (used to address SP and PC). In order to
accelerate PC and SP increment and decrement operations,
specific hardware is provided within the register block,
avoiding the use of the ALU for these simple operations.

MMP16 is microprogrammed. Its control memory
consists of 256 32-bit words. To address the control memory,
8-bit microaddresses are required. Each of these words will
contain a microinstruction (MMP16 has a reduced
instruction set, but it is not RISC). Again, a
microprogrammed control unit has been chosen instead of a
wired one for the sake of simplicity.

Figure 4: Register array of MMP16.

62

Figure 5: Arithmetic Logical Unit of MMP16.

The 16-bit Arithmetic and Logical Unit (ALU), shown in

Fig. 5 is able to perform arithmetic operations such as
addition, subtraction and logic operations such as AND, OR,
XOR and NOT.

IR can be loaded from IDB activating the ld_IR signal.
The format of the instructions of MMP16 has been designed
to simplify its decoding. Some fields of IR are used in
different areas of the system with different names, as shown
in Table 1.

The format of the available instructions in the IR is
detailed in Table 2. Their operation code can occupy 4, 8, 12
or 16 bits. The code always occupies the most significative
bits of the instructions first word. 16-bit codes have their 12
MSB (cop1, cop2 and cop3) to 1. 12-bit codes have their 8
MSB (cop1 and cop2) to 1. 8-bit codes have their 4 MSB
(cop1) to 1. This allows up to 15 4-bit codes, 15 8-bit codes,
15 12-bit codes and 16 16-bit codes. 45 different codes have
been selected out of the 61 possible ones.

TABLE I. FORMAT OF THE INSTRUCTION REGISTER (IR)

Instruction Registry (IR)

cop1 op1R op2R op3R

 cop2 cop3 cond
 immediate cop4

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

The second word of a two-word instruction always

contains an immediate data o a data that is used to calculate
the effective address of the data in the memory.

TABLE II. CODES OF OPERATION AND UBICATION OF THE
CORRESPONDING MICROPROGRAM.

cop1 cop2 cop3 cop4 address

��������� --- --- --- 1XXXX000
�� ��������� --- --- 0XXXX000
�� F ��������� --- 0XXXX100
�� F F XXXX 1XXXX100

IV. PIPELINING
MMP16 is organized as a two segment pipeline, as

shown in Fig. 7. The pipeline is controlled by clock signal �1.
The first segment is in charge of fetching the next
microinstruction, while the second one controls the
operations on the Data Processing Unit. Segmentation is
implemented by the use of the state register and the
microinstruction register. The first segment starts from the
state register, goes through the condition selection logic, then
the microprogram counter that decides which will be the next
microinstruction and the control memory that stores
microprograms. It finishes loading the microinstruction into
the microinstruction register.

The second segment starts from the microinstruction
register that distributes the microorders to control the
different blocks of the Data Processing Unit: registers, ALU,
bus interfaces, etc. When �2 arrives, the registers of the Data
Processing Unit are loaded. Then, the new state is loaded
into the status register to control the activity of the first
segment during the next cycle.

This kind of pipeline is one of the most frequent ones.
Its aim is to parallelize two slow processes: the search of the
next microinstruction in the memory and the execution of the
current microinstruction. The basic characteristic of this kind
of organization is that the election of the next
microinstruction, when a conditional jump occurs in the
microprogram, is made depending on the state of the
machine at the end of the previous microinstruction and not
depending on the state of the machine at the end of the
current cycle.

V. PROGRAMMING
One of the main features of MMP16 is the possibility for

the students to code and test their own microprograms.
Writing microprograms and testing them using MMP16’s
software simulator allows the students to better understand
the inner operation of the processor.

Figure 6: Reset Microprogram

63

Figure 7: Organization of the two-segment pipeline of MMP16.

Fig. 6 and 9 are provided as an example. MMP16 starts

with a RESET, that executes the microinstruction at address
0x8C. Here the system initialization should be done. The
program counter is set to 0xFFFE and interrupts are disabled.
At address 0xFFFE, there should be a jump instruction to the
beginning of the system initialization program. All this
should be stored in ROM in a real computer system.

After the RESET procedure, MMP16 starts a FETCH
cycle. First, it is checked if there is a pending interrupt to be
processed. If there is, the flags register and the current PC
has to be stored in the stack, the content of main memory
address 0 is loaded into the PC 2 . and the interrupts are
disabled. Then, a memory read cycle will be performed to
fetch the instruction the PC points at, followed by a jump to
the microprogram that interprets that instruction, which ends
jumping to the FETCH routine. This is a simple example of
the microcode for the MMP16. All the details can be found
at the MMP16 website.

The set of instructions of MMP16 can be divided in six
different subsets: arithmetic and logic instructions, load
instructions, store instructions, sequence breaking
instructions, stack management instructions and
miscelaneous (those that cannot be classified in any of the
former groups). Instructions can occupy one or two memory
words (16 or 32 bits). The set of instructions is depicted in
Fig. 8.

2 Usually, the interrupt vector is stored at the beginning of the memory
space.

Figure 8: Set of instructions of MMP16.

VI. SIMULATION
The operation of MMP16 can be simulated using a free

software developed by the authors and available for both
Windows and GNU/Linux platforms from the official
website of the program. Using this simulator, the students
can test if their microprograms execute properly the selected
instructions.

The simulator includes commands to store the desired
values in the control memory, the core memory of the
simulated system and any register in the CPU, or print their
values, at any time. The processor may be run some number
of clock cycles of both �1 and �2. The state of the simulation
may be saved and restored, so it can be resumed in the future.

64

Figure 9: Fetch microprogram.

A typical session would include the following steps:

1. Load the microprograms into the control memory.
2. Load the program into main memory.
3. Send a reset pulse.
4. Run the processor some clock cycles.
5. Test the content of the desired registers or memory words.

The simulator is the perfect complement to the practical
exercises in order to understand instruction sequencing and
the data path management, and helps the students to
comprehend the inner operation of the processor they have
already studied in theory. Furthermore, MMP16’s software
simulator is the last step in the process of connecting the
student’s knowledge about digital electronics (that can be
applied to understand MMP16’s hardware implementation)
to the principles of computer organization and the basics of
computer architecture (whose operation can be better
understood thanks to the simulator).

VII. CONCLUSIONS
MMP16 covers the gap between digital electronics and

computer architecture offering a complete set of didactic
tools: the design of a modern computer, the practical
application of the principles of computer organization
including advanced concepts such as pipelining, the
possibility to code and test microprograms, and finally a
software simulator as the last step of the process.

The use of MMP16 as a didactic tool has improved the
results of the students that learn principles of computer
architecture at UPM. Based on the obtained results, we
regard as the main advantages of this didactic tool its utility

to understand key concepts despite its simplicity, the
existence of a simulator that can be used to test their own
microprograms and therefore connect theory and practice,
and the link that MMP16 provides between digital electronic
and computer architecture. The authors expect to extend the
use of MMP16 to other higher education institutions in the
nearer future. A document with the full description of the
MMP16 with the full instruction set as well as the software
simulator and other teaching materials can be downloaded
form its official site3.

ACKNOWLEDGMENT
This work was partially supported by the EU Science and

Technology Fellowship Programme China.

REFERENCES

[1] Calazans, N. L. V. and Moraes, F. G. (2001). Integrating the teaching
of computer organization and architecture with digital hardware
design early in undergraduate courses. IEEE Transactions on
Educations,44(2):109–119.

[2] Tanenbaum, A. S. (2009). Structured Computer Organization.
Pearson International.
 Tomek, I. (1990). The Foundations of Computer Architecture and
organization. W. H. Freeman and Co.

 [4] Patterson, D. A. and Hennessy, J. L. (2008). Computer Organization
and Design. Morgan Kaufmann.

 [5] L. Rodriguez Pardo, M.J. Moure, M. V. and Mandado, E.(1998). Viscp:
a virtual instrumentation and cad tool for electronic. In Conference on
Frontiers in Education.

[6] Maurer, P. (1998a). Electrical design automation: An essential part of
computer engineers education. In Conference on Frontiers in
Education.

[7] Maurer, P. (1998b). Enhancing the hardware design experience for
computer engineers. In Conference on Frontiers in Education.

3 http://www.diatel.upm.es/jllopez/mmp16/

65

