
MMP16: Didactic Micro-Programmed Micro-Processor

José Luis López Presa Elio Pérez Calle

Department of Telematic Engineering and Architecture,
Universidad Politécnica de Madrid, Spain (UPM)

jllopez@diatel.upm.es

EU Science and Technology Fellowship Programme,
University of Science and Technology of China (USTC)

elio@ustc.edu.cn

3rd International Conference on Computer Research and Development
Shanghai, March 2011

Overview

MMP16 stands for 16-bit Micro-programmed Micro-Processor.

MMP16 is a didactic micro-programmed micro-processor for those
students that, having studied the basics of digital electronics, need to
understand the principles of computer organization prior to study
advanced computer architecture.

MMP16 has been designed as a bridge between the study and use of
digital electronic components and a full implementation of a digital
microprocessor.

These concepts have been identified as a teaching need by authors
such as Hennessy, Patterson, Tomek and Tanenbaum.

Besides the theoretical approach, MMP16 may be used as a learning
tool, allowing the students to develop and test their own
microprograms.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 2 / 40

Motivation
Tanembaum defines the following levels, present on most modern
computers (Tanenbaum, SCO, 2006).

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 3 / 40

Motivation

Tanembaum’s model

L2. Conventional machine level

L1. Microprogramming level

L0. Data logic level

Knowledge areas

Computer architecture

Principles of comp. organization

Digital electronics

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 4 / 40

Main Design Features

The main idea behind MMP16 is to build a bridge between Level-0
and Level-2 of Tanenbaum’s model using simple circuits that any
student with basic knowledge of digital electronics is able to
understad.

As a didactic tool, efficiency and performance are not the main design
goals.

By learning MMP16, students understand that they would be able to
build a CPU following Von Neumann’s model.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 5 / 40

Main Design Features

Why micro-programmed (and not wired)?
I MMP16 is a didactic tool.
I MMP16 is micro-programmed, and not wired beacuse of the simplicity

of the former over the latter.
I Allows the students to design automata corresponding to the

instructions sequencing without having to struggle with the hardware,
so they don’t need to modify the software simulator.

I Segmentation is easier to understand (extending segmentation to the
data processing unit, as done in RISC superescalar machines, is easier
after having understood this example).

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 6 / 40

Main Design Features

Simplified architecture and reduced instruction set, but not RISC.

Set of 16 16-bit registers, including SP and PC.

16-bit ALU able to perform arithmetic operations such as addition,
substraction and logic ones such as AND, OR, XOR and NOT.

16-bit address and data bus.

64K 16-bit memory.

Segmented control unit.

No I/O devices. Design is focused on CPU.

External signals are: r (memory read), w (memory write), ready (used
by memory to inform the processor that the required operation has
concluded), reset (resets CPU) and int (interrupts, may be activated
in the software simulator.)

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 7 / 40

General Description

data_bus

addr_bus memory mmp16

reset

r
w

ready

Φ2
Φ1
int

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 8 / 40

Organization

A 16-bit Internal Data Bus (IDB) connects all the functional areas.

Every register and bus are 16-bit ones, and a byte word cannot be
addressed, in order to achieve the highest simplicity.

Its control memory has 32-bit 256 words. 8 bits microaddresses are
needed to address the control memory, each word contaning a
microinstruction.

The main goal of MMP16 is to consolidate the student’s knowledge
about CPU innner organization and instruction sequencing.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 9 / 40

I/O Devices

For the sake of simplicity, there are not I/O devices, but they could
be easily added.

Even though there are not separated I/O and memory maps, this is
not a architectural limitation, used from the early PDP-11 to x86
architecture.

Nevertheless, interrupts are already present in MMP16.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 10 / 40

System layout

16 IDB

flags

16 16 4

5

r 5 external
signals w

PC

SP ALU

Register
array

Operands selection
Data Bus Address

bus
Interface

interface

Data Bus Address Bus

ready
reset

IR

m
icroorders

Control Unit

microprogram
control

condition
selection

int

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 11 / 40

Register array

There are 16 general purpose registers.

R14 is the stack pointer (SP) and R15 is the program counter (PC).

Registers may be addressed in two cases: a instruction referring a
register is executed, or the control unit selects SP or PC for an
operation to update PC or to handle the stack.

To increment and decrement PC and SP faster, an incrementer and a
decrementer are available, to avoid the use of the ALU for these
operations.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 12 / 40

Register array

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
SP
PC

Φ2

CLK

SEL

M
U

X

0
1
2
3

op1R
op2R
op3R
pc_sp

3

‘1

4

2

selR

MUX

0 1 2 3

+1

-1

opR 2

16

R2IDB

16

ID
B

16

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 13 / 40

Register array

seIR is a microinstruction field that selects how the register array is
addressed: one of the two fields of the instruction register (IR), op1R
(0), op2R (1) or op3R (2); or control unit directly selecting PC or SP.

In this case, the control signal pc sp allows selecting between PC and
SP.

opR is a microcommand used to select the operation to perform with
the selected register: nothing (0), increment it (1), decrement it (2)
or load it from IDB (3).

Register array has a selection input (SEL) that selects the register
whose data is obtained and that will be updated.

Finally, the control signal R2IDB lets the content of the selected
register to go IDB through a tristate. RaIDB is obtained decoding
aIDB command from the microinstruction.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 14 / 40

Operand selection

The first ALU operand (op1) can be loaded from IDB using the
control signal ld op1.

Sel op2 selects if the second operand (op2) is loaded from IDB or is
loaded with the 8-bit immediate field of IR (sign extended)

Ld op2 allows to load this second operand with the selected value.

ALU’s first operand will always be op1, but the second one may be
modified to perform several special operations, such as subtractions
using “two’s complement” representation for negative numbers.

It is possible to force op2 to have all its bits to one or to zero.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 15 / 40

Operand selection

MUX

0 1

IDB

Φ2

ld_op1
op1

16

16

op1’

sel_op2

op2’

imm<7> imm<7:0>

16

8 8

op2

inv_op2

Φ2

ld_op2

16

16

op2_0

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 16 / 40

Arithmetic Logic Unit (ALU)

The 16-bit ALU is able to perform arithmetic operations such as
addition, substraction (using “two’s complement”) and logic ones
such as AND, OR, XOR and NOT.

The ALU includes an adder and three sets of logical gates.

The NOT operation has only one operand (op1) and it is performed
through a XOR operation with 1. . . 1 as a second operand.

The operation to be performed in the ALU (addition, substraction,
AND, OR, XOR, NOT) can be selected using op ALU.

The signal ALUaIDB, obtained decoding aIDB microcommand, allows
the result of the ALU to go to IDB through the appropriate tristate.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 17 / 40

Arithmetic Logic Unit (ALU)

sel_Cin

inv_Cin

C

Cin
Cn-1

Cn-2
V’

op1 op2

op1’ op2’

Σ

sel_Carry
C’ op1’ op2’ op1’ op2’ op1’ op2’

MUX

0 1 2 3
2 op_ALU

16 IDB

ALU2IDB

Z’
N’

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 18 / 40

Arithmetic Logic Unit (ALU)

When performing an addition or substration, initial carry has to be set
using the sel Cin and inv Cin signals.

I Initial carry is 0 for a addition.
I Substration is performed adding op1 and op2’s two’s complement

(negated op2 and initial carry 1).
I To perform a 32-bit addition, both 16 LSB are added with initial carry

0 and then both 16 MSB using as initial carry the one generated in the
LSB addition.

I To perform a 32-bit substraction, both 16 LSB are substracted using
borrow as carry flag, and then both 16 MSB using as initial carry the
negation of the one generated in the LSB substraction.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 19 / 40

Flags

Flags indicate four conditions that can occur as a result of a
operation in the ALU, as well as one bit indicating if interruptions are
enabled or disabled.

The four possible conditions are:
I Z: 1 if result is zero and 0 otherwise.
I N: 1 if result is negative (MSB equals 1), and 0 otherwise.
I V: 1 if overflow in a two’s complement operation is detected.
I C: Cn-1 en case of addition (carry) and NOT Cn-1 in case of

substraction (borrow).

To indicate interruptions:
I I: 1 if interruptions are enabled, 0 otherwise.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 20 / 40

Flags

Sel f allows to select if flags are loaded from the data bus, if they are
updated from flags generated in the ALU, if interruptions are enabled
or not. Mod f allows to update the flags register.

The flagsaIDB signal activates the tristate that allows the flags to go
to IDB (i.e. go to stack). This signal is obtained decoding aIDB.

Flags register is 5-bit, so they will be the five LSB from IDB.

ld_IR

Φ2
IR

16
IDB

D
EC

3
2
1
0

2IDB

R2IDB
flags2IDB
data2IDB
ALU2IDB

2

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 21 / 40

Flags

mod_f

Φ2
flags

sel_f
2

3 2 1 0

‘1, Z, V, N, C

‘0, Z, V, N, C
I, Z’, V’, N’, C’

MUX

I, Z, V,N, C
5

16
flags2IDB

IDB

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 22 / 40

Interfaces with external buses

Ld data allows to load the data register from IDB.

When the w signal is activated, data from this register will go to the
data bus so they can be written on memory.

Data register keeps the data stable in the data bus during all the
memory write cycle.

Data can go from the external data bus to IDB through a tristate
control by dataaIDB generated from aIDB.

Ld addr enables loading the addr register from IDB. When the
signales r or w are activated, its content will go to the address bus.

Addr register keeps the address stable durgin both memory read or
write cycles.

IR can be loaded from IDB activating the ld IR signal.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 23 / 40

Instruction Register and aIDB decoding (I)

ld_data

Φ2
data

w

data2IDB

data_bus

IDB

ld_addr

Φ2
addr

r

addr_bus
w

16

16

16

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 24 / 40

Instruction Register and aIDB decoding (II)

ld_IR

Φ2
IR

16
IDB

D
EC

3
2
1
0

2IDB

R2IDB
flags2IDB
data2IDB
ALU2IDB

2

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 25 / 40

Pipelining

The control unit of MMP16 is segmented:
I Segment I is devoted to the search of the next microinstruction to

execute.
I Segment II is devoted to the execution of the current microinstruction.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 26 / 40

Pipelining

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 27 / 40

Pipelining

This kind of pipeline is one of the most frequent ones. It tries to
parallelize two slow processes: the search of a new microinstruction in
the memory and the execution of the microinstruction, and therefore
accelerate the machine.

The basic feature of this kind of organization is that the election of
next microinstruction in the case of a conditional jump inside the
microprogram is performed depending on the status of the machine at
the end of the previous microinstruction, and not on the status of the
machine at the end of the current cycle.

maddressi+1 = f (minstructioni , statusi−1)

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 28 / 40

Condition selection

The status register stores the conditions in function of which is it
possible to modify the ordinary program execution sequence.

Some of these conditions are:
I Those indicated in the “cond” field of IR, based on values of the flag

registry.
I The “ready” condition used for wait cycles until memory operations are

completed.
I When interruptions are allowed (flag I), activating the interruption

request (int) external signal.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 29 / 40

Condition selection

status register

C V N Z ready

MUX

0 1 2 3 4 5 6 7

Z

N V

Z C

‘0

M
U

X

3
2
1
0

‘1

cond<3:1>

Φ1

cond<0>

sel_cond

inv_cond

cond’

intI

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 30 / 40

Microprogram control

mPC is the microprogram counter, contains the control memory
address where the microinstruction that is being executing is
contained and that would be stored in the microinstruction register
(mI).

The selection of the next microinstruction (where am I going) is made
depending on the selected condition (cond’) and sel sig, that indicate
where am I going if selected conditions occurs. In case this doesn’t
occur, I will go to the next microinstruction, following mPC
(mPC+1).

Due to the segmentation of the control unit, jump condition that is
evaluated in a given status is the one generated in the previous one.

MMP16 has a external reset signal that allows to intialize the
machine.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 31 / 40

Microprogram control

MUX

0 1

microprogram
memory
(mROM)

microinstruction register (mI)

32

MUX

3 2 1 0

+1

mPC

save

reset

sel_next

cond’

2
2

‘01111100

8

8

save_mpc

Φ1

d_alt

8 8 8

8

Φ1
jump address

computed from
the content

of IR

8

Φ1

microorders

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 32 / 40

Microprogram control

The “save” registry may be used to save any frequently used
microaddress. It is loaded with the save mpc signal.

D alt is a field of the microinstruction that allows to jump to any
address of the control memory. As it overlaps with the
microcommands that control ALU, if d alt is used, ALU cannot be
used in this status.

It is possible to jump to any address depending on the instruction
contained in the IR. The microprogram implementing this instruction
should be loaded in this address. This is a basic possibility in any
instruction interpreter.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 33 / 40

Decoding of the instruction

The hardware of MMP16 determines the memory address where the
microprogram the executes the corresponding instruction is located,
what is commonly referred to as the decoding of the instruction.

MMP16 operation codes may be 4, 8, 12 or 16-bit.
I 16-bit operation codes have their 12 MSB (cop1, cop2, cop3) to 1.
I 12-bit operation codes have their 8 MSB (cop1, cop2) to 1.
I 8-bit operation codes have their 4 MSB (cop1) to 1.

This allows 15 4-bit, 15 8-bit, 15 12-bit and 16 16-bit codes, up to 61
in total.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 34 / 40

Jump address depending on IR

 opc3 opc4

0 1

MUX

‘0

0 1

MUX

0 1

MUX

opc3

opc2

‘0 ‘1

2

f(IR)

8

‘0

opc2

opc1

‘1

opc1

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 35 / 40

External signals generation

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 36 / 40

Fetch phase flux diagram

int?

PC→addr, incPC, r

0 → I

microprograma
correspondiente

data_bus→PC

SP→addr, decSP, w

DecSP, flags→data

PC→data

NO

ready?

SI

NO

SI

0→addr, r

ready? NO SI

SP→addr, w ready?
NO

SI

data_bus→IR

ready? NO

SI

f(IR)?

•••

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 37 / 40

Software simulator

MMP16 software simulator (available in both GNU/Linux and
Windows platforms) is one of the project’s advantages.

The simulator helps to understand instruction sequencing and the
data path management, and helps the students to comprehend the
inner operation of the processor they have already studied in theory.

The simulator is the last step in the process of connecting the
student’s knowledge about digital electronics (Tanenbaum’s Level-0)
to the principles of computer organization and the basics of computer
architecture (Tanenbaum Level-2).

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 38 / 40

Software simulator

A typical session would include the following steps:
I Load the microprograms into the control memory.
I Load the program into main memory.
I Send a reset pulse.
I Run the processor some clock cycles.
I Test the content of the desired registers or memory words.

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 39 / 40

Conclusions

As a didactic project, MMP16 covers the gap between digital
electronics and computer architecture offering a complete set of tools:

I The design of a modern computer.
I The practical application of the principles of computer organization

including advanced concepts such as pipelining.
I The possibility to code and test microprograms.
I A GNU/Linux and Windows-based software simulator as the last step

of the process.

Full information and downloads in:
http://www.diatel.upm.es/jllopez/mmp16/

J.L. López, E. Pérez (UPM-USTC) MMP16 Didactic Microprocessor ICCRD Shanghai 2011 40 / 40

