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Chapter 1

Introduction

1.1 Motivation

The Graph Isomorphism problem (GI) tests whether two given graphs are isomorphic or not. In
other words, it asks whether there is a one-to-one mapping between the vertices of the graphs,
preserving the arcs. This problem has been studied for decades by mathematicians, chemists
and computer scientists, and is considered interesting from both the theoretical and the practical
point of view, since it has applications in many fields, ranging from pattern recognition and com-
puter vision [14, 32, 2, 51] to information retrieval [9], data mining [71], VLSI layout validation
[24, 23, 58, 1, 59], or chemistry [43, 25, 68]. In this last field, for instance, a unique identifier
(canonical numbering) for every chemical compound is needed. Examples of unique identifier
generators are MOLGEN-CID [12] and SMILES [72]. The latter has been recently shown [57]
to be unable to give a unique identifier for certain pairs of isomorphic graphs representing the
same chemical component. GI and canonization are problems that go together.

In 1977, Reed and Corneil wrote an interesting survey on the GI problem, called “The Graph
Isomorphism Disease” [60], to review the state of the art at that time. Later, in 1996, Fortin
[28] updated the survey, focusing on practical isomorphism algorithms and hard graphs for
isomorphism testing. Recently, Goldberg has summarized the most significant results in graph
isomorphism in a brief, yet very comprehensive, survey [31].

While the Graph Isomorphism problem is clearly in NP, it has not been possible thus far to
prove it to be in P nor NP-complete. Although there is no known polynomial-time algorithm
for the general graph isomorphism problem, there is strong evidence that it is not NP-complete.
Complexity theory results show that if GI were NP-complete, then the polynomial time hierarchy
would collapse to its second level (Σp

2 = Πp
2 = AM) [11, 64], and while no NP-complete problem

has been shown to be polynomial-time equivalent for its decision and counting versions, GI
has been [46]. Consequently, it has been conjectured that GI might lie strictly between P and
NP-complete, as proposed by Karp [36].

Many attempts have been made to find upper complexity bounds for GI. Schöning, who intro-
duced the notion of lowness in complexity theory, showed in [64] that GI is low for the class Σp

2.
Subsequently, in [38] it was shown that it was also low for PP and C=P. Furthermore, it was
shown that if GI were NP-complete, then the polynomial-time hierarchy would be low for the
classes PP and C=P, obtaining more evidence that GI is not NP-complete. Later, in [4] it was
shown that Graph Isomorphism was, in fact, in SPP (”Stoic PP”). That question had been left

1



open in [38].

For some restricted classes of graphs, GI is known to be solvable in polynomial time. A simple
labeling algorithm can determine whether two trees are isomorphic in linear time [3]. In [35],
a linear time isomorphism test is shown for planar graphs. Combinatorial methods yielded
an algorithm for graphs of bounded genus that works in time nO(g) for genus g ≥ 1 [26].
Group-theoretic methods led to polynomial time algorithms for graphs with bounded eigenvalue
multiplicity [7] (an alternative algorithm for this class of graphs that uses only combinatorics
and group theory was proposed by Fürer [29]). With considerably deeper use of group theory,
Luks [44] obtained also a polynomial time algorithm for graphs of bounded valence (degree).
More specific classes of graphs like geometric circulants have also been shown recently to be
testable for isomorphism in polynomial time [56]. However, most of these algorithms, although
polynomial in time, are not designed to be implemented or they are not of practical use for their
hidden complexity.

Problems tend to arise when dealing with graphs that have very few automorphisms, but a high
degree of regularity (cf. [39]), like certain families of strongly regular graphs (SRGs). Examples
of SRGs are Latin square graphs and Steiner graphs. Miller [52] showed that the isomorphism of
Latin square and Steiner triple system graphs is decidable in time O(nlogn+O(1)). Subsequently,

Spielman [67] obtained a time bound of nO(n1/3 logn) for the general case of strongly regular
graphs. Projective planes are amongst the hardest cases for graph isomorphism testing. Miller
[52] showed that their isomorphism can be decided in O(nlog log n+O(1)) steps. Babai and Luks
[8] generalized this result to λ–planes (for λ = 1 these are the projective planes), with bounded
λ.

A major contribution in trying to establish the time complexity for the general case of graph
isomorphism, due to Luks and Zemlyachenko, is their exp

√
cn logn time bound (cf. [8, 75]).

In [8] Babai and Luks describe an algorithm that compute canonical forms of general graphs in
exp(n1/2+o(1)), which is the best time bound up to date.

Although the isomorphism problem may be hard for some specific classes of graphs, a naive
algorithm has been presented in [5] that is able to canonically label most graphs on n vertices
in average linear time. In fact, it is shown there that the probability that a graph on n vertices
can be canonically labeled with that algorithm is greater than 1 − 7

√

1/n (for sufficiently large
n). Subsequently, Babai and Kučera [6] improved this result obtaining a linear time canonical
labeling algorithm with only exp(−cn logn/ log log n) probability of failure. Adding a depth-first
search, they also derived a canonical labeling algorithm for all graphs with linear average time
complexity. Although these results do not yield practical algorithms, they show how easy it is
to test the isomorphism of random graphs. Recently, in [22], a linear time graph isomorphism
algorithm is presented that works with even hihger probability. All this has encouraged many
researchers to look for efficient practical graph isomorphism algorithms.

Up to now, practical graph isomorphism algorithms have an exponential upper bound time
complexity, although many of them work fine for many graph families. Among these, the most
powerful currently available is Brendan McKay’s nauty package [50]. Despite its impressive
performance in most cases, there are some families of graphs that force it to run in exponential
time [54]. The purpose of this thesis is to devise an algorithm that is comparable with nauty
in the good cases and, at the same time, overcomes at least some of the deficiencies found in
nauty.

2



1.2 Objectives

The aim of this dissertation is to propose a new algorithm that can be used to test (directed)
graphs for (exact) isomorphism. The algorithm must be applicable to the general case, and
must be complete, i.e. give a yes or no answer in every case. Starting with the fundamentals of
the algorithm, we will develop incremental versions, showing the improvements attained with
each new version. We must ensure that, for the families of graphs for which a version has good
performance, the new version will run as fast as the previous one. Specifically, we will show that
certain families of graphs that are hard for some version become easy or manageable with the
new version.

We are going to impose additional restrictions on our algorithm. In particular, the memory
space required to store the data structures needed to perform the tests must be at most O(n2)
for graphs on n vertices. This restriction is natural for any practical algorithm since, otherwise,
if the algorithm needed more memory, then it would only be useful for small graphs (hundreds
of vertices). Then, our algorithm must work for graphs with thousands of vertices.

To test our algorithm, and as an additional contribution, we will construct a benchmark for
testing GI practical algorithms. Then, we will build a graph database with different families of
graphs which, we believe, are somewhat relevant for the tests. Some of them are graphs that
are handled easily by most graph isomorphism algorithms, like random graphs. Other families
are known to be especially hard for nauty, though they are conceptually simple. Finally, there
is a family of very hard graphs for all the GI algorithms we know of, the point-line graphs of
Desarguesian Projective Planes. For some families, we will perform only positive tests, i.e., in
which both graphs are isomorphic (if negative tests do not apply or are not relevant). In our
benchmark, both directed and undirected graphs are included, since nauty suffers from a special
difficulty to deal with digraphs.

We will evaluate our algorithms and compare them with other algorithms (mainly nauty) by
means of our benchmark. We include graph charts to show the practical performance of our
algorithm in comparison with the other algorithms. For this purpose, we will use nauty [49] and
vf2 [16] (an improved version of vf [15, 17]) as algorithms of reference. The choice of nauty is
obvious, since it is the referent for practical graph isomorphism algorithms. In turn, vf2 is chosen
because it uses a completely different approach from that of nauty. It is more of a traditional
direct backtracking approach with what seem to be good heuristics to prune the search tree (at
least for some classes of graphs).

Our algorithm, although not designed for graphs with colored vertices or colored arcs, can be
extended in a naive way to handle them. Besides, it does not include sophisticated invariants
that could be added at the users choice (like nauty does), but again, it would not be difficult to
add that functionality.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In the next chapter, we compile previous
related work conducted by other researchers, that is, we present previous graph isomorphism
algorithms that use different approaches to the problem, showing their advantages and disad-
vantages.

3



In Chapter 3, we give a description of the families of graphs chosen for the tests, and justify
why we believe they are appropriate to evaluate GI algorithms.

Chapter 4 contains the formal definitions and the notation to be used in the rest of this document.

Chapter 5 describes the algorithm we start from. We put forward the main idea of our algorithms,
which consists in analyzing the first graph and building a data structure that represents the
structure of the graph, and then trying to build a new data structure from the second graph,
which matches the first one. As it will be shown, this process yields an isomorphism between
the two graphs. We also prove the correctness of the algorithm, and perform some tests with
different families of graphs, showing the results obtained with this first algorithm.

In Chapters 6, 7, and 8 we show how, adding some more capabilities to our basic algorithm im-
proves its performance for certain families of graphs, having a low impact on other families. Like
in Chapter 5, we prove the correctness of the algorithms proposed, and compare the performance
of the new versions with the other algorithms.

In Chapter 9, we study space and time complexity of our algorithm and show that it works in
polynomial time with high probability.

Finally, in Chapter 10 we summarize the conclusions of the work described here, and how this
work might be extended in the future.

4



Chapter 2

Related Work

In this chapter we present the different approaches to the problem of finding a “good in practice”
algorithm to test graphs for isomorphism. We will not attempt to give a thorough description
of each algorithm, but just a sketch of the main ideas on which they are based. Practical
isomorphism algorithms may be roughly classified into two main categories. The first class uses
a direct approach. They take the two graphs to be compared, and try to find an isomorphism
between them directly with a classical depth-first backtrack algorithm, possibly using heuristics
to prune the search tree. The second class uses a different approach. They take a single graph G
and compute some function C(G) which returns a certificate (canonical labeling) of the graph,
such that for two graphs G and H, C(G) = C(H) if and only if G and H are isomorphic. Once
the certificates have been computed, comparing them is straightforward.

All the algorithms proposed thus far have an exponential worst case time complexity. Fur-
thermore, as they get more sophisticated to handle difficult graphs, they become slower for
the simple graphs. Therefore, some algorithms that give quick positive or negative answers for
simple graphs, but can sometimes answer “I do not know” (incomplete algorithms), have been
proposed in the literature. These algorithms have polynomial time complexity and may be very
fast for easy graphs but do not solve the general problem. One such algorithm is RW [32],
which is based on Markov Random Walks. It uses the steady state probability distribution of
the Random Walk as a topological signature for the nodes. The problem arises when nodes get
colliding signatures. Then, it is not able to give a positive or negative answer. The authors
have proposed a modified version, RW2 [33], with a better matching rate, and yet, the same
time complexity. They show that its matching rate is very good for random graphs, which is
not surprising (remember the linear average time algorithm of Babai and Kučera [6]).

Other non-traditional approaches have been explored, like, for example, that of McGregor [47].
He proposes transforming the isomorphism problem into a constraint satisfaction problem, and
then applying especially tuned constraint algorithms to solve the problem in the new domain.
However, this approach does not seem intuitively inviting, since the constraint satisfaction prob-
lem is known to be NP-hard, and, as it has been previously mentioned, probably, graph iso-
morphism is not. As Fortin says, “a fundamental weakness of non-traditional approaches is
that once the problem is transformed into another paradigm, it is no longer possible to apply
group theory ideas to prune the search space. In some sense, the semantics of the data is being
lost in the translation.” For other examples of non-traditional approaches see, for example, the
references in [28, 39].
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2.1 Invariants

A graph invariant is a function f such that, if applied to two isomorphic graphs G and H, then
f(G) = f(H) (the converse is not necessarily true). Therefore, an invariant imposes a necessary
condition for isomorphism. If an invariant is both necessary and sufficient for isomorphism, it
is said to be complete. A complete graph invariant is also called a certificate. A certificate for a
tree can be computed in linear time, as shown in [3] and [40, Chapter 7]. However, there is no
known complete graph invariant computable in polynomial time for the general case (otherwise,
GI would be in P). Simple graph invariants are the number of vertices and the number of arcs of
a graph. Other graph invariants are the determinant, the characteristic equation of its adjacency
matrix, and the set of its roots (the spectrum of the graph), all of them computable in polynomial
time, yet none of them complete.

A popular method of defining a certificate is to consider the adjacency matrix of the graph.
Each possible permutation of the vertices of a graph on n vertices defines a different adjacency
matrix. Concatenating the rows (or columns) of the adjacency matrix, we obtain a string that
can be interpreted as an n2-bit number. Considering all the possible n! permutations (i.e. all
such numbers), it is possible to define a certificate of the graph as the smallest such number.
This certificate induces an order on the vertices of the graph, which is called a canonical labeling
of the graph. Unfortunately, this certificate is difficult to compute. In fact, this certificate will
have as many leading zeroes as possible. Hence, the first k vertices in the canonical labeling
are pairwise non-adjacent and k is as large as possible. Since these k vertices form a maximum
clique in the complement of the graph, this certificate also solves the Maximum Clique problem,
and this problem is known to be NP-complete. Since graph isomorphism is not likely to be NP-
complete, computing this certificate may be harder than testing isomorphism by other means.
What most isomorphism algorithms that use this invariant try to do is to generate only certain
permutations, according to the structure of the graph, but not by any particular ordering of
the vertices [48, 40, 39, 73]. This way, the certificate will not necessarily have as many leading
zeroes as possible, but yet the ordering will be canonical and reproducible (i.e., the same) for
any pair of isomorphic graphs. Unfortunately, there are cases where an exponential number of
permutations are needed to compute these certificates.

A vertex invariant is a function f on a vertex, such that if there is an isomorphism I between
G and H, for each v ∈ G, v′ ∈ H, such that I(v) = v′, then f(v) = f(v′). The typical example
of a vertex invariant is the degree of a vertex. If an isomorphism I maps v to v′, both vertices
must have the same degree. Yet the converse is not necessarily true. This vertex invariant can
be extended to a graph invariant: if G and H are isomorphic, then they must have the same
number of vertices for each possible degree. Moreover, any isomorphism between them will map
vertices with some degree to vertices with the same degree. This is useful, for example, when
computing a canonical labeling of a graph. A previous classification of the vertices according to
their degree will reduce the number of permutations to be considered to permutations among
vertices with the same degree. Vertex classification is used by almost all graph isomorphism
algorithms to prune the search space [48, 40, 39, 73].

Many other vertex invariants have been proposed in the literature. Some are applied directly by
the algorithm, while others might be more useful if applied only under certain circumstances. So-
phisticated invariants take long to compute, and most of the times, extending the search is faster
than applying a sophisticated invariant. In this case, their application should be determined by
the user. This is the case of nauty [49], which offers a number of invariants that can be applied at
the user’s request. Some of them are: twopaths (the number of vertices reachable along a path
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of length two), distances (the number of vertices reachable at each distance), adjacencies (to
mitigate the bad performance of nauty with digraphs), etc. A well known graph invariant is the
characteristic polynomial (of the adjacency matrix) of the graph, but there are families of graphs
that cannot be distinguished by their characteristic polynomial (i.e. they have the same spectra)
[30]. However, eigenvalues and eigenvectors may help in distinguishing non-isomorphic graphs
[43]. The distance matrix was used by Schmidt and Druffel [63] who proved that its use reduced
considerably the amount of backtracking needed by their algorithm. Subsequently, Mittal [53]
proposed a similar algorithm with better performance, but, since computing the distance matrix
is quite costly, this idea has not been paid much more attention thereafter. King and Tzeng
[37] proposed what they call the “probability propagation matrix”, whose computation may be
parallelized to be used in multiprocessors. However, the use of invariants does not guarantee
that the search space will be reduced (cf. [20]).

2.2 Direct Backtracking Algorithms

Perhaps the most natural way to tackle the graph isomorphism problem is to use direct back-
tracking. Usually, this class of algorithms classify the vertices (and maybe edges) according to
some invariants to reduce the matching alternatives, but they relay mainly on a routine that
explores the possible matchings of the vertices of one graph against the vertices of the other
graph, backtracking if a branch does not reach a valid solution. To prune the search tree, they
use feasibility heuristic functions that try to detect and discard unsuccessful branches as soon as
possible. Examples of these class of algorithms are vf [17, 15] and vf2 [16]. Also the previously
mentioned algorithm by Schmidt and Druffel [63] fits in this class, along with other well known
algorithms, like Ullman’s [69]. Other early examples may be found in [42] and [70].

Algorithms in this class are feasible for both graph and subgraph isomorphism (according to
Ullman [69] it is due to the fact that they process both graphs at once), but tend to have high
time complexity when the graphs being tested have many automorphisms (i.e. when they are
highly symmetric). In this case, for positive tests, they benefit from the fact that when they find
an isomorphism, they stop exploring the search space, while for negative tests, they have to go
around the whole search tree, exploring branches that are automorphic to other branches that
have been already discarded, considerably degrading the algorithm’s performance. The major
drawback of these algorithms is that they do not detect automorphisms.

2.3 Canonical Labelings

In 1970, Corneil and Gotlieb [19] proposed an algorithm for graph isomorphism testing based
on a conjecture that later Mathon disproved [45], giving examples of graphs that did not satisfy
their conjecture. Thus their algorithm, which, if their conjecture held would be complete, was
shown to be incomplete. However, they used an interesting partitioning and refining method,
similar to that of Weisfeiler [73], which are the basis of most canonical labeling algorithms.

These algorithms do not compare one graph against the other directly, but they work separately
on one graph first and on the other next, to generate canonical labelings of the graphs that may
be compared directly. Detailed explanations on how to implement this class of algorithms may
be found in [40, Chapter 7] and [39]. Currently, the most powerful canonical labeling program is
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nauty [50], which is also currently the most widely used. While vf2 is faster than nauty in some
cases [27], with hard graphs, nauty outperforms any other proposed isomorphism program.

The algorithm used by nauty (and most canonical labeling programs) is a backtracking algorithm
that traverses a search tree looking for a canonical labeling, and, in the process, builds the
automorphism group of the graph. Nauty starts with an initial vertex classification by their
degree, that defines a partition of the vertices. From this partition, it performs successive
refinements based on the adjacencies of the vertices of a cell of the partition with the vertices in
all the cells of the partition. The basic refinement techniques used by nauty are described in [48]
and are similar to the ones presented in [73]. When a partition is stable (i.e. it is not possible
to refine it), a vertex individualization is done and the refinement process restarts. When the
discrete partition (all the cells have size one) is reached, a leaf in the search tree is reached and
a labeling and its associated candidate certificate is obtained. The nodes of the tree at which
a vertex individualization has been done are the backtracking points that will be used to find
other paths to a leaf, and therefore, obtain other labelings. If this new labeling induces the same
candidate certificate, an automorphism is detected and memorized. This automorphism will be
used to prune branches in the search tree. If the new labeling induces a smaller certificate, it
is chosen as the new candidate certificate. If a new branch is at some point known to induce
a bigger certificate, it is discarded. When all possible branches have been fully traversed or
discarded, the certificate and the automorphism group have been computed.

This approach benefits from automorphisms to prune the search tree. Therefore, with highly
symmetric graphs, this class of algorithms are very fast. Besides, they need the same time
independently of whether the graphs being tested are isomorphic or not. However, they need
to compute the whole automorphism group, what might be harder than other alternatives for
isomorphism testing. This is particularly evident for a family of graphs defined in [74] and used
by Miyazaki [54] to prove exponential lower time bounds for nauty. These graphs have bounded
valence and, therefore, it should be possible to test them for isomorphism in polynomial time
[44]. This family of graphs will be part of our benchmark.

8



Chapter 3

Our Benchmark

Benchmarking is crucial for practical graph isomorphism programs. Depending on the intended
use of the algorithm, different families of graphs would be significant. In our case, since we
want a general purpose algorithm, we want to test it with very different graph families. For
this purpose, we have chosen the following classes of graphs which will be described in detail:
random graphs, regular meshes, Miyazaki’s Fürer gadgets, different families of strongly regular
graphs (lattice graphs, triangular graphs, Latin square graphs, and Paley graphs), unions of
tripartite graphs, unions of strongly regular graphs, and Point-Line graphs of Desarguesian
projective planes. Other families of graphs have been considered, but discarded since they did
not discriminate among the algorithms, like cubic symmetric graphs or tournaments. Directed
and undirected versions of the graphs will be considered when possible.

Since we intend to test our algorithm against nauty and vf2, and vf2 can not handle disconnected
graphs, all the graphs included in our benchmark will be connected. However, some families
simulate disconnected graphs (graphs built from unions of small graphs). For each such family,
the building process will be described in detail.

3.1 Random Graphs

Random graphs are usually very simply tested for isomorphism. Yet, they are the most common
graphs found in practice. For this reason, an algorithm that is relatively fast for difficult graphs
but has bad performance with random graphs will not be practical. The random graphs included
in our benchmark have been taken directly from [62]. They are graphs in which the arcs connect
vertices without any structural regularity. The probability of an arc connecting two vertices is
independent of the vertices. The generation of these graphs adopted the same model proposed
in [69]. This model fixes the probability η of an arc connecting two distinct vertices. For
our benchmark, only the graphs in [62] with η = 0.1 have been used, though there are other
alternatives available in their database. These graphs have few, if any, automorphisms, and
therefore, they are easy to test. Their vertices are very different from each other and easy to be
differentiated.

Since all the graphs in [62] are directed, we have built another family of random graphs, obtained
by simply converting these digraphs into undirected graphs. This allows to study changes in the
behavior of the algorithms for these slight changes in their structure. In the benchmark, only
pairs of isomorphic graphs will be included. It is easy to see that, with very high probability, a

9



simple graph invariant like the degree sequence, will distinguish non-isomorphic random graphs.
In [62], it is shown how vf2 is faster than nauty for these non-isomorphic random graphs.

3.2 Regular Meshes

Unlike random graphs, meshes do have a structure. This structure makes the graphs to have
symmetries, and therefore automorphisms, what should make testing the isomorphism of these
graphs harder. The graphs of this class include in the benchmark have also been taken form [62].
We have chosen to include in our benchmark only 2D-meshes, although there are also 3D- and
4D-meshes available, since their results would be similar (they have similar structure). These
graphs are all square meshes like the 4 × 4 mesh showed in Figure 3.1.(a). The meshes of a
given size included in the benchmark are all isomorphic. This means that the arcs are always
directed rightwards and downwards as in the figure. These graphs have been shown to be very
hard for nauty 2.0 [62]. The subsequent version 2.2 of nauty performs much better, though it is
still quite slower than vf2.

(b)(a)

Figure 3.1: 2D-meshes.

Like in the previous case, the corresponding undirected graph family has been derived from the
directed version, obtaining graphs like the one shown in Figure 3.1.(b).

3.3 Miyazaki’s Fürer Gadgets

Another family of graphs included in our benchmark is the Miyazaki’s Fürer gadgets. The graphs
of this class have been generated with a program provided by Takunari Miyazaki, who showed
in [54] that nauty needed exponential time to compute canonical forms for these graphs. In fact,
since we do not consider colored graphs, and we do not force certain orderings of the vertices
that could make the graphs harder, we will not be able to force nauty to require exponential
time with all the instances. Our graphs can be assimilated to what Miyazaki calls his type-C
family (with vertices randomly ordered). However, we will include also a directed version of
these graphs, which are likely to force nauty to require exponential time.

The graphs are built in the following way: first, consider the undirected multigraph Yα shown in
Figure 3.2 with vertex set V (Yα) = {v1, ..., vα, w1, ..., wα} and edge set E(Yα) = {E1 ∪E2 ∪E3}
where:

(i) E1 = {e1, eα+1 : e1 = (v1, v1), eα+1 = (wα, wα)},
(ii) E2 = {ei, e′i : ei = e′i = (wi−1, vi), 2 ≤ i ≤ α}, and
(iii) E3 = {fi : fi = (vi, wi), 1 ≤ i ≤ α}.
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Figure 3.2: The graph Yα.

Each node in Yα has an incident cycle (one or two e-edges) and an incident bridge (edge f).
Then, applying Fürer’s construction (cf. [74]), we obtain a new (simple, not multi) graph, in
which each vertex in the multigraph Yα is substituted by a Fürer gadget. Thus, we obtain a
3-regular graph. Figure 3.3 shows the resulting graph, and its directed version.
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Figure 3.3: Miyazaki’s graphs.

These are bounded valence graphs and, therefore, their canonical forms can be computed in
polynomial time using the method of [44], what yields a polynomial time isomorphism test.
However, as shown by Miyazaki, nauty may require exponential time to compute their canonical
forms.

In our benchmark, different permutations of the graphs are used for each graph size. To provide
for non-isomorphism tests, we generate graphs where one random bridge is changed for a switch.
This yields, graphs that are very similar to the original ones, but not isomorphic. Finding this
subtle difference should be hard for direct backtracking algorithms, but they are also hard for
nauty (cf. [54]). Examples of such graphs with twenty vertices are shown in Figure 3.4.
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Figure 3.4: Miyazaki’s switch graphs.
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3.4 Strongly Regular Graphs

Strongly regular graphs (SRG) lie somewhere between highly structured and apparently random
graphs. A strongly regular graph with parameters (n, k, λ, µ) is a regular graph of degree k on
n vertices, such that each pair of adjacent vertices has λ common neighbors, and each pair of
non-adjacent vertices has µ common neighbors.

In fact, though SRGs can be precisely characterized as a class of graphs, they can not be
considered a proper family. Graphs of the same family should have more things in common.
Strongly regular graphs can be further classified into several families, and even some of them
might be impossible to fit into any family. Here, we will only take into consideration four
families of strongly regular graphs: Paley graphs, triangular graphs, Latin Square graphs and
lattice graphs.

3.4.1 Paley graphs

The strongly regular Paley graph P (q) is a graph whose vertex set is the Finite Field of order
q, Fq, for q an odd prime power, q ≡ 1 (mod 4), where two vertices are adjacent if and only if
their difference is a nonzero square in Fq. These SRGs have parameters n = q, k = (q − 1)/2,
λ = (q − 5)/4, and µ = (q − 1)/4.

Paley graphs are not only vertex transitive, but also very regular with small automorphism
groups. This makes it easy to compute their automorphism groups and canonical forms. How-
ever, since they do not have many automorphisms, they may be hard for direct backtracking
algorithms.

Two subfamilies of Paley graphs have been distinguished: one contains the graphs generated for
q prime, and the other contains the graphs generated for q a proper prime power. When q is
prime, the corresponding graph has a smaller automorphism group than in the case q is a proper
prime power. This is supposed to make computing the automorphism group, for the case where
q is prime, faster.

For the case of q prime, an ad hoc program has been used to generate the graphs in our
benchmark, while the graphs for the case of q a proper prime power have been generated with
the aid of the GAP package [34] with Grape [66], which provide a very helpful tool to generate
Finite Fields, and to operate with them. Then, random permutations have been generated for
each graph size. Since there is only one Paley graph with certain parameters, only positive tests
will be performed on this family of graphs.

3.4.2 Triangular Graphs

Let Sq be a set of cardinality q ≥ 5, then the vertex set of the triangular graph T (q) is the set
of 2-element subsets of Sq, which contains q(q− 1)/2 vertices. In T (q) two vertices are adjacent
if and only if they are not disjoint sets. The triangular graphs have parameters n = q(q − 1)/2,
k = 2(q − 2), λ = q − 2, and µ = 4.

These graphs are vertex transitive and have large automorphism groups. Therefore, for direct
backtracking algorithms, isomorphism would be easier to test than non-isomorphism since it
only needs to find the first isomorphism. However, for algorithms that compute the whole
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automorphism group of the graphs, triangular graphs should be harder than Paley graphs,
though this may be mitigated by an efficient way to discover and make use of automorphisms.

There is only one triangular graph for each value of q, and no other SRG has the same parameters
as a triangular graph, except for q = 8 (cf. [13]). Therefore, only positive tests will be considered
for this family of graphs.

3.4.3 Latin Square Graphs

The family of Latin square graphs is generated from Latin squares. A Latin square of order n,
n ≥ 2, is an n× n matrix with n different symbols, where each symbol occurs once per row and
column of the matrix.

Let L1 = (aij) and L2 = (bij) be two Latin squares with n symbols, n ≥ 2. L1 and L2 are
orthogonal if and only if every ordered pair of symbols occurs exactly once among the n2 pairs
(aij , bij), i, j ∈ {1, ..., n}. A set of Latin squares of order n where each pair of Latin squares are
orthogonal is called a set of mutually orthogonal Latin squares (MOLS).

From each set of MOLS of order n, n ≥ 2, a strongly regular graph can be generated in the
following way: the vertices of the graph are the n2 items of a Latin square of order n, and two
vertices are adjacent if and only if the items are in the same row, in the same column, or they
have the same symbol in one of the orthogonal Latin squares.

A Latin square graph is built using the construction above from a set of g − 2 MOLS of order
m, m ≥ g ≥ 2, and denoted Lg(m). It is a strongly regular graph with parameters n = m2,
k = g(m− 1), λ = m− 2 + (g − 1)(g − 2), and µ = g(g − 1).

Since there are m− 1 MOLS of order m, it is possible to generate
(

m−1
g−2

)

combinations of Latin

squares that yield
(

m−1
g−2

)

Latin square graphs, some of which may be isomorphic. Remember that
this holds for any g, m ≥ g ≥ 2. For a fixed g, the generated graphs have the same parameters
and are potentially non-isomorphic, what allows the generation of negative tests. These graphs
have a large automorphism group but at the same time, they are not so regular as the Paley or
triangular graphs, what makes them harder examples of strongly regular graphs. The existence
of non-isomorphic Latin square graphs with the same parameters suggests difficulty. In fact, for
a long time, they have been considered hard instances for graph isomorphism (cf. [67]).

For our benchmark, we have included different permutations of Latin square graphs L3(5), L4(7),
L5(9), L6(11), L7(13), L9(17), L10(19), L12(23), L13(25), L14(27), L15(29), and L16(31). Other
combinations of m and g were also possible, and also different values of g for a fixed m could
have been considered. However, we believe that the graphs included are significant enough for
our purpose.

The generation of these graphs has been performed with the aid of GAP [34] and GUAVA [21],
that has a function that generates the sets of MOLS required to build the graphs. For each
set of parameters g and m, several graphs have been generated. Then, they were tested for
isomorphism in order to discard redundant instances. Permutations of the resulting graphs were
generated in order to obtain one hundred pairs of each size. Thus we can study the behavior of
the algorithms with different permutations of the same graph, and with different graphs with
the same parameters.
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3.4.4 Lattice Graphs

A lattice graph is a graph whose vertices are the elements of an m×m square and two vertices
are adjacent if and only if they are in the same row or in the same column. This graph may be
seen as a Latin square graph L2(m) –for g = 2, there are no MOLS to consider–, and then, its
parameters will be n = m2, k = 2(n− 1), λ = n− 2, and µ = 2.

Lattice graphs are determined by their parameters. Except for n = 4, they are the unique
strongly regular graphs with these parameters. This, along with their high regularity suggests
that they may be quite simpler than proper Latin square graphs for direct backtracking al-
gorithms, while their large automorphism group can make them still hard for algorithms that
compute canonical labelings. Since no other SRG has the same parameters as a given lattice
graph, only positive isomorphism tests will be performed for this family of graphs.

3.5 Unions of Tripartite Graphs

This is a family of graphs built from small graph pieces. We have designed two small tripartite
graphs that are very similar, yet non isomorphic. Their directed versions are shown in Figure 3.5.
Their undirected versions are straightforward.
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Figure 3.5: Tripartite graphs.

Our original idea was to generate graphs that were disjoint unions of several copies of these
graphs. Since vf2 cannot deal with disconnected graphs, we considered computing the inverses
of the graphs, and using these connected graphs for the tests. However, we decided to modify
the generation process, so that instead of the disjoint union, we would connect each vertex in a
connected component to every other vertex in the graph. This also produces a connected graph.

We have generated graphs with a different but similar number of copies of each component.
Therefore, the graphs will be very similar. They have the same number of vertices, the same
number of arcs, and the same sequence of vertex degrees. We expect these graphs to be hard,
both for direct backtracking algorithms, and for those which compute canonical forms of the
graphs since they have many automorphisms, but these come from structurally different com-
ponents.

Directed and undirected versions of the graphs have been generated, and pairs of isomorphic
and non isomorphic graphs will be used for the tests. Here, we expect the negative tests to be
especially hard for direct backtracking algorithms.
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3.6 Unions of Strongly Regular Graphs

Unions of strongly regular graphs with the same parameters are known to be good candidates
to force nauty to exponential time. They are also likely to have the same effect on direct
backtracking algorithms. Hence, we should test our algorithm with this kind of graphs and see
if it suffered from the same disease. Since any set of strongly regular graphs would do the job,
we just chose some (29, 14, 6, 7) strongly regular graphs that are small enough to allow building
graphs of the required sizes and there are enough to build sufficiently large graphs for the tests.
These graphs were provided by Sven Reichard [61].

The unions of these strongly regular graphs have been accomplished in the same way as in
the case above. Also, several permutations of different graphs have been generated for each
size, so that both positive and negative tests may be performed. Again, for direct backtracking
algorithms, the negative cases are expected to be much harder than the positive ones.

3.7 Point-Line graphs of Desarguesian Projective Planes

Let n = q2+q+1, and let π be a finite projective plane of order q with point set P = {p1, ..., pn}
and line set L = {l1, ..., ln}. A bipartite graph G with partitions (P,L) is said to be the incidence
point-line graph of the projective plane π if for all i, j ∈ {1, ..., n}, {pi, lj} is an edge of G if and
only if pi ∈ lj . See for example the paper of Lazebnik and Thomason [41] for a method to
generate the point-line incidence graphs of projective planes.

Point-line graphs of projective planes are known to be amongst the hardest graphs for isomor-
phism testing. For the generation of the graphs, we have used the point-line incidence matrices,
provided by Gordon Moorhouse [55], of the Desarguesian projective planes. This gives rise to
a family a very hard graphs. There may be more than one projective plane for a given size.
However, they differ in basic parameters, like the degree, so they are easy to differentiate. Hence,
we have only considered the Desarguesian projective planes, so we will only perform positive
tests.

The structure of these graphs is better understood with an example. Figure 3.6 shows the point-
line graph of the Desarguesian projective plane of order 2. Although this graph is bipartite, it
has been drawn taking one vertex, and placing the rest of the vertices according to their distance
to this vertex. This way, it is clear that the diameter of the graph is 3. In fact, the diameter
remains constant for all the graphs in the family.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.........................................................................................................................

...................
...................

...................
...................

.......

...................................................................................

...................
...................

...................
...................

.......

...................................................................................

...................
...................

...................
...................

.......

...................................................................................

....................................................................................................................................................

.......................................................................................................................................................................

...................................................................................................................................................................................

.................................................................................................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
..

..............................................................................................................................................................

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

........

.......................................................................................................................................................................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........

........................
........................

........................
........................

........................
........................

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

....................................................................
....................................................................

............

Figure 3.6: Point-line graph of the Desarguesian projective plane of order 2.
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3.8 Graph Encoding

The graphs in our benchmark are stored each in one file in the same format used in the graph
database in http://amalfi.dis.unina.it/graph/ [62]. Each graph file is composed by a sequence
of 16-bit words. The words are encoded in little-endian format. The first word is the number of
vertices of the graph. Then, for each vertex, there is a word telling the number of arcs coming
out of that vertex, followed by a sequence of words indicating the endpoints of these arcs. This
encoding limits the number of vertices of a graph to tenths of thousands, but it is enough for
our purpose; bigger graphs would need too much storage. Graph sizes will range from tenths of
vertices to around one thousand vertices, and for each graph size, we will consider one hundred
pairs of graphs.

The undirected version of the graphs is generated in the following way. For each existing arc
between two vertices, the arc with the opposite direction is added if it did not already exist. This
is the way undirected graphs are represented, according to the definition given in Chapter 4.
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Chapter 4

Definitions and Notation

In this chapter, we introduce some notation and definitions that will be used throughout this
dissertation. First we recall some basic concepts in graph theory, and redefine others in a way
that bests serves our purpose. Then, we introduce some specific definitions that are to be used
in the development of our algorithms.

4.1 Basic Definitions

A directed graph G = (V,R) consists of a finite non-empty set V of vertices and a binary relation
R, i.e. a subset R ⊆ V × V . The elements of R are called arcs. An arc (u, v) ∈ R is considered
to be oriented from u to v. An undirected graph is a graph whose arc set R is symmetrical, i.e.
(u, v) ∈ R iff (v, u) ∈ R. From now on, we will use the term graph to refer to a directed graph.
Undirected graphs are just a particular case of directed graphs.

Given a graph G = (V,R), R can be represented by an adjacency matrix Adj (G) = A with size
|V | × |V | in the following way:

Auv =















0 if (u, v) /∈ R ∧ (v, u) /∈ R
1 if (u, v) /∈ R ∧ (v, u) ∈ R
2 if (u, v) ∈ R ∧ (v, u) /∈ R
3 if (u, v) ∈ R ∧ (v, u) ∈ R

Note the difference with the traditional definition of the adjacency matrix where Auv = 1
if (u, v) ∈ R and Auv = 0 if (u, v) /∈ R. Our definition gives, in one matrix element Auv,
the information in two elements of the traditional adjacency matrix (elements Auv and Avu).
Furthermore, it can be easily generalized to colored arcs (each type or color of an arc may be
denoted by a different value in the adjacency matrix).

Definition 4.1 Given a graph G = (V,R) and its adjacency matrix Adj (G) = A, the degree
of a vertex v ∈ V under graph G, denoted by Deg(v,G), is the 3-tuple (D3, D2, D1) where
Di = |{u ∈ V : Avu = i}|, for i ∈ {1, 2, 3}.
Again, note the difference with the traditional definition of degree. Our degree is a combination
of the in-degree, the out-degree, and the number of neighbors of a vertex. (Observe also that
if we colored the arcs with k colors, the degree would be a k-tuple.) Let V1 ⊆ V , the available
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degree of v in V1 under G, denoted by ADeg(v, V1, G), is the 3-tuple (D3, D2, D1) where Di =
|{u ∈ V1 : Avu = i}| for i ∈ {1, 2, 3}. Note that ADeg(v, V1, G) = Deg(v,GV1∪{v}).

Extending the notation, we use Deg(V1, G) = d for some V1 ⊆ V to denote that ∀u, v ∈
V1,Deg(u,G) = Deg(v,G) = d. The same extension can be applied to the available degree.
Let V1, V2 ⊆ V such that ∀u, v ∈ V1,ADeg(u, V2, G) = ADeg(v, V2, G) = d. Then, we denote
ADeg(V1, V2, G) = d.

Let G = (V,R) be a graph with Adj(G) = A, and V1, V2 ⊆ V . Let ADeg(V1, V2, G) =
(D3, D2, D1), then we define the function NumLinks(V1, V2, G) = D3+D2+D1 (i.e. the number
of neighbors each vertex of V1 has in V2 under graph G), and the predicate HasLinks(V1, V2, G) =
(NumLinks(V1, V2, G) > 0).

We will say a 3-tuple (D3, D2, D1) ≺ (E3, E2, E1) when the first one precedes the second one in
lexicographic order and (D3, D2, D1) ≻ (E3, E2, E1) when the second one precedes the first one
in lexicographic order. This notation will be used to order the degrees and the available degrees
of both vertices and sets.

Definition 4.2 Let G = (V,R) be a graph. Let V ′ ⊆ V . Then the subgraph induced by V ′ on
G, denoted GV ′ , is the graph H = (V ′, R′) such that R′ = {(u, v) : u, v ∈ V ′ ∧ (u, v) ∈ R}.
A permutation π : V −→ V acting on the finite set V is a one-to-one mapping from V onto
itself. The image of an element v ∈ V with respect to the permutation π is denoted by π(v).

Definition 4.3 Let G = (V,RG) and H = (V,RH) be two graphs with the same vertex set. A
permutation π of V is called an isomorphism of G and H if ∀u, v ∈ V , we have that (v, u) ∈
RG ⇐⇒ (π(v), π(u)) ∈ RH .

G and H are called isomorphic, written G ≃ H, if there is at least one isomorphism π of them.
An automorphism of G is an isomorphism of G and itself.

4.2 Specific Notation and Definitions for the Algorithms

It will be necessary to introduce some specific notation to be used in the specification of our
algorithms. Like other isomorphism testing algorithms, ours relies on vertex classification. This
classification is performed by partitioning the vertex set using some vertex invariant, refining
the successive partitions in an iterative process, and individualizing vertices when no refinement
is possible and the vertices have not been completely classified yet. Let us start defining what
a partition is, and the partition concatenation operation.

Definition 4.4 A partition of a set S is a sequence S = (S1, ..., Sr) of disjoint nonempty subsets
of S such that S =

⋃r
i=1 Si. The sets Si are called the cells of S. The empty partition will be

denoted by ∅.
Definition 4.5 Let S = (S1, ..., Sr) and T = (T1, ..., Ts) be partitions of two disjoint sets S and
T , respectively. The concatenation of S and T , denoted S◦T , is the partition (S1, ..., Sr, T1, ..., Ts).
Clearly, ∅ ◦ S = S = S ◦ ∅.
Usually, the partition of the vertex set according to the degree of each vertex is used as the
starting point for vertex classification in graph isomorphism testing algorithms. It is easy to see
that it is necessary for two graphs to be isomorphic, that the number of vertices of each degree
is the same in both graphs. Let us formally define the degree partition of a graph.
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Definition 4.6 Let G = (V,R) be a graph. The degree partition of G, denoted DegreePartition(G),
is a partition V = (V1, ..., Vr) of V such that for all i, j ∈ {1, ..., r}, i < j implies Deg(Vi, G) ≻
Deg(Vj , G).

We will now introduce the concept of compatibility among partitions. It is rather intuitive to
understand the compatibility of the degree partitions of two graphs. However, we will generalize
the concept of compatibility to partitions in general.

Definition 4.7 Let S = (S1, ..., Sr) be a partition of the set of vertices of a graph G = (VG, RG),
and let T = (T1, ..., Ts) be a partition of the set of vertices of a graph H = (VH , RH). S and
T are said to be compatible under G and H respectively if |S| = |T | (i.e. r = s), and for all
i ∈ {1, ..., r}, |Si| = |Ti| and Deg(Si, G) = Deg(Ti, H).

Partitions may be further refined by two means. The first one is to classify the vertices in the
cells of a partition considering the adjacency type they have with a certain pivot vertex in the
graph considered. This way, cells may be split into up to four distinct cells (or k if we use
k-colored arcs). We call this process a vertex refinement. The second refinement classifies the
vertices in the cells using their available degree in a given pivot set (cell). This leads to what we
call a set refinement.

Definition 4.8 Let G = (V,R) be a graph, v ∈ V , V1 ⊆ V \ {v}. The vertex partition of
V1 by v, denoted PartitionByVertex (V1, v, G), is a partition (S1, ..., Sr) of V1 such that for all
i, j ∈ {1, ..., r}, i < j implies ADeg(Si, {x}, G) > ADeg(Sj , {x}, G).

Definition 4.9 Let G = (V,R) be a graph, and S = (S1, ..., Sr) a partition of V . Let v ∈ Sx

for some x ∈ {1, ..., r}. The vertex refinement of S by v, denoted VertexRefinement(S, v, G)
is the partition T = T1 ◦ ... ◦ Tr such that for all i ∈ {1, ..., r}, Ti is the empty partition ∅ if
¬HasLinks(Si, V,G) and PartitionByVertex (Si \ {v}, v, G) otherwise. Sx is the pivot set and v
is the pivot vertex.

Definition 4.10 Let G = (V,R) be a graph, and V1, V2 ⊆ V . The set partition of V1 by V2,
denoted PartitionBySet(V1, V2, G), is a partition (S1, ..., Sr) of V1 such that for all i, j ∈ {1, ..., r},
i < j implies ADeg(Si, V2, G) ≻ ADeg(Sj , V2, G).

Definition 4.11 Let G = (V,R) be a graph, and S = (S1, ..., Sr) a partition of V . Let
P = Sx for some x ∈ {1, ..., r} be a given pivot set. The set refinement of S by P , denoted
SetRefinement(S, P,G) is the partition T = T1 ◦ ... ◦ Tr such that for all i ∈ {1, ..., r}, Ti is the
empty partition ∅ if ¬HasLinks(Si, V,G) and PartitionBySet(Si, P,G) otherwise.

Once we have presented the possible partition refinements that may be applied to partitions, we
can build sequences of partitions in which an initial partition of a graph is taken (for example
the degree partition) and subsequent partitions are generated, each from its previous one, by
applying one of the refinements defined above. Vertex refinements are tagged as VERTEX (if
the pivot set has only one vertex), SET (if a set refinement is possible with some pivot set),
or BACKTRACK (when a vertex refinement is performed with a pivot set with more than one
vertex).

Definition 4.12 Let G = (V,R) be a graph. A sequence of partitions for graph G is a tuple
(S,R,P), where S = (S0, ...,St), are the partitions themselves, R = (R0, ..., Rt−1) indicate the
type of refinement applied at each step, and P = (P 0, ..., P t−1) choose the pivot set used for each
refinement step, such that all the following statements hold:

1. For all i ∈ {0, ..., t− 1}, Ri ∈ {VERTEX, SET,BACKTRACK}, and P i ∈ {1, ..., |Si|}.
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2. For all i ∈ {0, ..., t − 1}, let Si = (Si
1, ..., S

i
ri), V i =

⋃ri
j=1 S

i
j, Si+1 = (Si+1

1 , ..., Si+1
ri+1

).
Then:
(a) For all x ∈ {1, ..., ri+1}, it exists y ∈ {1, ..., ri}, such that Si+1

x ⊆ Si
y and HasLinks(Si

y, V
i, G).

(b) For all x ∈ {1, ..., ri+1 − 1}, Si+1
x ⊆ Si

y implies Si+1
x+1 ⊆ Si

z where y ≤ z.

(c) Ri = SET implies Si+1 = SetRefinement(Si, Si
P i , GV i).

(d) Ri 6= SET implies Si+1 = VertexRefinement(Si, v, GV i) for some v ∈ Si
P i.

3. Let St = (St
1, ..., S

t
r), V

t =
⋃r

j=1 S
t
j, then for all x ∈ {1, ..., r}, NumLinks(St

x, V
t, G) = 0

or |St
x| = 1.

For convenience, for all l ∈ {1, ..., t−1}, by level l we refer to the tuple (S l, Rl, P l) in a sequence
of partitions. Level t is identified by St, since Rt and P t are not defined.

Note that, at each refinement step, from Statement 2b the relative order of the vertices in the old
partition is preserved in the new one, and the vertices with no links in a partition, are discarded
for the following one. This way, it is possible to define a (partial) order of the vertices of a
graph, induced by a sequence of partitions, in the following way:

Definition 4.13 Let Q = (S,R,P) be a sequence of partitions for graph G = (V,R) where
S = (S0, ...,St), R = (R0, ..., Rt−1), and P = (P 0, ..., P t−1). For all i ∈ {0, ..., t}, let Si =
(Si

1, ..., S
i
ri), and V i =

⋃ri
j=1 S

i
j. The (partial) order induced by Q on the set of vertices V is that

which satisfies the following conditions:

1. For all i ∈ {0, ..., t− 1}, all the vertices in V i \ V i+1 precede all the vertices in V i+1.

2. For all i ∈ {0, ..., t − 1}, Si+1 = VertexRefinement(Si, v, GV i) implies that v precedes all
the vertices in V i \ V i+1.

3. For all x, y ∈ {1, ..., r} such that NumLinks(Si
x, V

i, GV i) = 0 and NumLinks(Si
y, V

i, GV i) =
0, x < y implies that all the vertices in Si

x precede all the vertices in Si
y.

4. Let St = (St
1, ..., S

t
r), then for all x, y ∈ {1, ..., r}, x < y implies all the vertices in St

x

precede all the vertices in St
y.

Note that there are pairs of vertices that are not ordered by this partial order (those that belong
to the same cell, when they are discarded for having no remaining links). These vertices are
therefore interchangeable since they are adjacent to exactly the same vertices in the same way.
When referring to the order induced by a sequence of partitions Q, we mean any total order
that respects the (partial) order defined. Let ≤Q be any such order. We will denote as ωQ(i)
the ith vertex with respect to ≤Q (i.e. |{v : v ∈ V ∧ v ≤Q ωQ(i)}| = i− 1).

Now, we will introduce the concept of compatibility among two sequences of partitions. Finding
compatible sequences of partitions for two graphs leads to finding an isomorphism between them,
as it will be proved in Section 5.3. Each sequence of partitions induces an order on the vertices
of its corresponding graph. Mapping the ith vertex in one order to the ith vertex in the other
order we get such isomorphism. This will be proved in Section 5.3 as well.

Definition 4.14 Let G = (VG, RG) and H = (VH , RH) be two graphs. Let QG = (SG,RG,PG),
and QH = (SH ,RH ,PH) be two sequences of partitions for graphs G and H respectively. QG and
QH are said to be compatible sequences of partitions if they satisfy all the following:

1. |SG| = |SH | = t, |RG| = |RH | = t− 1, |PG| = |PH | = t− 1.

2. Let RG = (R0
G, ..., R

t−1
G ), and RH = (R0

H , ..., Rt−1
H ), then for all i ∈ {0, ..., t−1}, Ri

G = Ri
H .

3. Let PG = (P 0
G, ..., P

t−1
G ), and PH = (P 0

H , ..., P t−1
H ), then for all i ∈ {0, ..., t− 1}, P i

G = P i
H .

4. Let SG = (S0, ...,St), SH = (T 0, ..., T t), then:
(a) For all i ∈ {0, ..., t}, |Si| = |T i|.
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(b) For all i ∈ {0, ..., t}, let Si = (Si
1, ..., S

i
ri), T i = (T i

1, ..., T
i
ri), let V

i
G =

⋃ri
j=1 S

i
j, and

V i
H =

⋃ri
j=1 T

i
j , then Si and T i are compatible under GV i

G
and HV i

H
respectively.

(c) Let St = (St
1, ..., S

t
r), T t = (T t

1, ..., T
t
r), then for all x, y ∈ {1, ..., r}, ADeg(St

x, S
t
y, G) =

ADeg(T t
x, T

t
y, H).

One parameter of a sequence of partitions that will be used by our algorithms to choose the target
partition to be reproduced (as it will be shown in next chapter), is the number of refinement
steps where backtracking will be needed.

Definition 4.15 Let Q = (S,R,P) be a sequence of partitions, and let R = (R0, ..., Rt−1). The
amount of backtracking induced by Q is BacktrackAmount(Q) = |{i : i ∈ {1, ..., t − 1} ∧ Ri =
BACKTRACK}|.
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Chapter 5

Basic Algorithm

In this dissertation we are going to explore a new approach to graph isomorphism testing. As
we said in Chapter 2, direct backtracking algorithms benefit from the fact that once they have
found an isomorphism between the graphs, they can stop the search. We also mentioned that
computing a canonical labeling implies going round every non isomorphic ordering of the vertices,
looking for the one that best fits the canonicalization criterion. One way to prune this search is
using a feasibility function to detect when a path leads to a worse solution than the best found
yet, i.e. the value of the certificate induced by the new ordering is smaller than the one induced
by the candidate certificate found so far. However, if the graph is very regular, it will not be
until a long path has been followed, that this will be detected. Additionally, a canonical labeling
algorithm, like nauty, learns from the discovered automorphisms, and prunes automorphic paths
in the search tree. Our algorithm tries to capture the advantages of these approaches without
suffering from their disadvantages, as follows:

• Instead of finding a specific canonical form of both graphs to be compared, we take any
easy to reproduce form (ordering of the vertices) of one of the graphs, and then, try to
produce an equivalent ordering for the other graph, using the information obtained from
the first graph to aid in the search.

• We use partition (vertex or set) refinement to classify the vertices so that the correspon-
dence between the vertices of one graph and the vertices of the other graph is as much
constrained as possible, to reduce the amount of backtracking necessary to try all feasible
paths in the search space.

• Partition refinement has been traditionally performed by splitting cells according to the
adjacencies their vertices have with all the cells in a partition (see for example [73, 48, 1]).
However, this can be quite costly. Therefore, we do things the other way round; i.e. we
take cells, not to try to have them split, but to try to split other cells (or itself) using
vertex or set refinement. This approach is much less costly in terms of time and, on the
short term, also space, but, on the long term, it needs more space (though limited to
O(n2) as required), and leads to the same stable (or equitable) partition. Furthermore,
it is not necessary to consider singleton cells (cells with only one vertex) more than once
[1]. Hence, we discard singleton cells once they have been used for a vertex refinement.
This reduces the complexity of the problem, and reduces the memory requirements of the
algorithm.

• We look for automorphisms, but only those that can be found without backtracking.
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(Otherwise, finding automorphisms would be equivalent to finding the canonical form of
the graph.)

5.1 Algorithm sinauto

First, we will present a simple version of the algorithm, where automorphism detection is not
performed, and then, we will add successive improvements that discover and make use of auto-
morphisms, and apply other techniques to prune the search space.

5.1.1 Main Algorithm

Algorithm 1, AreIsomorphic, receives two graphs G and H as parameters and returns TRUE
if both graphs are isomorphic, and FALSE if they are not.

Algorithm 1 Test whether G and H are isomorphic (sinauto).

AreIsomorphic(G,H) : boolean
1 - - let G = (VG, RG) and H = (VH , RH)
2 if (|VG| 6= |VH |) ∨ (|RG| 6= |RH |) then
3 return FALSE
4 else

5 DG ← DegreePartition(G)
6 DH ← DegreePartition(H)
7 if DG and DH are not compatible under G and H respectively then

8 return FALSE
9 else

10 QG ← GenerateSequenceOfPartitions(G,DG)
11 QH ← GenerateSequenceOfPartitions(H,DH)
12 if BacktrackAmount(QG) ≤ BacktrackAmount(QH) then
13 return Match(0, G,H,QG,DH)
14 else

15 return Match(0, H,G,QH ,DG)
16 end if

17 end if

18 end if

This algorithm tests first if both graphs have the same number of vertices and arcs. It is easy
to see that this is a necessary condition for isomorphism. Then, it generates initial partitions of
the vertices of both graphs based on their degrees; DG is the degree partition of G and DH the
degree partition of H. If these partitions are not compatible (G and H differ in the number of
vertices of some degree), the graphs cannot be isomorphic. Generating the degree partitions and
checking for their compatibility is fast and can simplify the search for an isomorphism between G
and H, since vertices in one cell of DG can only be mapped to vertices in the corresponding cell
of DH (they can only be mapped to vertices with their same degree). Unfortunately, for regular
graphs, this DegreePartition has only one cell, what means that each vertex in one partition (or
graph) can be mapped to any one in the other partition (or graph).

If the degree partitions DG and DH are compatible, Algorithm 2, GenerateSequenceOfPartitions,
is used to generate sequences of partitions QG and QH for graphs G and H respectively. The
one that has less backtracking points is chosen as the target sequence and a new sequence of
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partitions for the other graph, compatible with the target, is searched for by Algorithm 4, Match.
If it succeeds, G and H are isomorphic. Otherwise, they are not.

Note that the partition with larger number of backtracking points (QG or QH) is dropped after
being generated. However, generating a sequence of partitions takes (only) polynomial time,
(and it is not guaranteed to be optimal in the number of backtracking points). Besides, the
sequences of partitions may be very different. Therefore, it is worth generating a sequence
of partitions for each graph, and then choosing the one which will generate less backtracking
points during the search process. This way, we also obtain an algorithm that takes the same
time, independently of the order of its parameters.

Algorithm 2 Generate a sequence of partitions for a graph G.

GenerateSequenceOfPartitions(G,D) : sequence of partitions
1 - - let G = (V,R)
2 - - for all l > 0, if Sl is defined, let Sl = (Sl

1, ..., S
l
rl
), V l =

⋃rl
j=1 S

l
j

3 S0 ← D
4 for each S0

x ∈ S0 do

5 Valid(S0
x)← (|S0| > 1) ∧HasLinks(S0

x, V
0, G)

6 end for

7 l← 0
8 while ∃Sl

x ∈ Sl : (|Sl
x| > 1) ∧ HasLinks(Sl

x, V
l, G) do

9 P l ← IndexBestPivot(Sl, G)
10 if |Sl

P l | = 1 then

11 Rl ← VERTEX
12 v ← the only vertex in Sl

P l

13 Sl+1 ← VertexRefinement(Sl, v,GV l)
14 else

15 success ← FALSE
16 while Valid(Sl

P l) ∧ ¬success do

17 Valid(Sl
P l)← FALSE

18 Rl ← SET
19 Sl+1 ← SetRefinement(Sl, Sl

P l , GV l)

20 success ← ∃Sl+1
x , Sl+1

x+1 : Sl+1
x , Sl+1

x+1 ⊂ Sl
y for some Sl

y ∈ Sl
21 if ¬success then

22 P l ← IndexBestPivot(Sl, G)
23 end if

24 end while

25 if ¬success then

26 Rl ← BACKTRACK
27 v ← any vertex in Sl

P l

28 Sl+1 ← VertexRefinement(Sl, v,GV l)
29 end if

30 end if

31 l← l + 1
32 for each Sl

x ∈ Sl do
33 - - let Sl

x ⊆ Sl−1
y , Sl−1

y ∈ Sl−1

34 Valid(Sl
x)← HasLinks(Sl

x, V
l, G) ∧ (Valid(Sl−1

y ) ∨ (|Sl
x| < |Sl−1

y |))
35 end for

36 end while

37 t← l
38 S← (S0, ...,St);R← (R0, ..., Rt−1);P← (P 0, ..., P t−1)
39 return (S,R,P)
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5.1.2 Generation of a Sequence of Partitions

Algorithm 2, GenerateSequenceOfPartitions, starts from the degree partition D of a graph G,
and generates successive partition refinements, until it finds a partition such that the vertices in
cells with more than one vertex have no adjacencies with the remaining vertices in that partition.
New partitions are generated from their previous ones in the following way:

1. If there are singleton cells in the partition, one of them is chosen as the pivot set and a
vertex refinement is performed to obtain the next partition in the sequence (lines 10-13).

2. Otherwise, the algorithm performs set refinements using different cells in the partition as
pivot sets, until one of them is able to split at least one cell (maybe itself), or all of them
have been tried unsuccessfully (lines 15-24).

3. If no cell meeting the conditions of Cases 1 and 2 has been found, then some cell is chosen
as the pivot set, and a vertex in that cell is used as the pivot vertex to generate the new
partition performing a vertex refinement (lines 25-29).

Valid is an attribute of the cells, used to improve the performance in Case 2. A cell Sl
x is invalid

if it has been proved to be unable to split any cells in partition S l, and valid otherwise. Thus,
new cells are valid unless they have no remaining links, since a cell without links will never be
able to split any cell. Before a cell is used as the pivot set for a refinement by set, it is marked
invalid in advance, because, if it is not able to split any cell, it will be proved invalid, and if it
is able to split some cell, once it has been used, it has split all the cells to its best, and it will
never be able to split any of the subcells it has generated (otherwise, it would have split them
at this point). Then, if it does not split itself with this refinement, it will remain invalid, whilst
if it does, its subcells will be valid, since they are new, and they are not known to be invalid yet.

Algorithm 3 Find the best set Sl
i ∈ S l to be used as a pivot.

IndexBestPivot(Sl, G) : integer
1 - - let Sl = (Sl

1, ..., S
l
r) and V l =

⋃r

i=1 S
l
i

2 b← 1
3 for i← 2 to r do

4 if Valid(Sl
i) then

5 if ¬Valid(Sl
b) ∨ (|Sl

b| > |Sl
i|) ∨ (|Sl

i| = 1 ∧ NumLinks(Sl
i, V

l, G) > NumLinks(Sl
b, V

l, G)) then
6 b← i
7 else

8 if ¬Valid(Sl
b) ∧HasLinks(Sl

i, V
l, G) ∧ (¬HasLinks(Sl

b, V
l, G) ∨ (|Sl

b| > |Sl
i|)) then

9 b← i
10 end if

11 end for

12 return b

The task of choosing the pivot set among a set of cells is done by Algorithm 3, IndexBestPivot .
This algorithm behaves as follows:

• It chooses a singleton cell with remaining links (as many as possible), if such a cell exists.
This corresponds to Case 1 above.

• If there is not such a cell, it chooses one among the smallest valid cells (if there is one such
cell). This corresponds to Case 2 above.

• If there are no valid cells, it chooses one among the smallest cells with remaining links
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with the vertices in the partition. This corresponds to Case 3 above.

The pivot set is chosen according to three different criteria: first, it is better a pivot set which
has links than one without links, since a pivot set with no links will not be able to split any
cell. Among cells with links, a valid one is preferred, since an invalid cell will not be used for a
set refinement, and would lead to a backtracking point, which is the algorithm’s worst option.
Finally, a smaller cell is preferred, since it will be faster to process than a bigger one.

5.1.3 Search for a Sequence of Partitions Compatible with the Target

In order to minimize the backtracking of Algorithm 4, Match, the target sequence of partitions
will be that, among QG and QH , with less backtracking points. This does not guarantee that
less backtracking will be needed to find a valid match (if it exists), but helps in practice.

Algorithm 4 Find a sequence of partitions compatible with the target (sinauto).

Match(l, G,H,QG, T ) : boolean
1 - - let QG = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
2 - - let Sl = (Sl

1, ...S
l
rl
), V l =

⋃rl
j=1 S

l
j , for all l ∈ {0, ..., t}

3 - - let T = (T1, ...Tr),W =
⋃r

j=1 Tj , since Sl and T are compatible, r = rl
4 if l = t then
5 success ← ∀x, y ∈ {1, ..., r},ADeg(St

x, S
t
y, G) = ADeg(Tx, Ty, H)

6 else

7 X ← TP l

8 if Rl = BACKTRACK then

9 repeat

10 v ← any vertex in X
11 X ← X \ {v}
12 T ′ ← VertexRefinement(T , v,HW )

13 - - let T ′ = (T ′

1, ..., T
′

r′),W
′ =

⋃r′

j=1 T
′

j

14 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

15 success ← Match(l + 1, G,H,QG, T ′)
16 else

17 success ← FALSE
18 end if

19 until X = ∅ ∨ success
20 else

21 if Rl = VERTEX then

22 v ← the only vertex in X
23 T ′ ← VertexRefinement(T , v,HW )
24 else (i.e. Rl = SET)
25 T ′ ← SetRefinement(T , X,HW )
26 end if

27 - - let T ′ = (T ′

1, ..., T
′

r′),W
′ =

⋃r′

j=1 T
′

j

28 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

29 success ← Match(l + 1, G,H,QG, T ′)
30 else

31 success ← FALSE
32 end if

33 end if

34 end if

35 return success
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Algorithm Match is used to look for a sequence of partitions QH for a graph H, compatible
with the target QG, for a graph G, starting from its degree partition DH . Match is a recursive
backtracking algorithm which generates a new partition each time it is run, until it reaches the
last partition in the sequence. It starts with a partition T that is compatible with S l, and then it
generates a new partition T ′ using the same refinement used to generate S l+1 form S l, with the
corresponding pivot set TP l . If partitions T ′ and S l+1 are compatible, then it makes a recursive
call to process the new partition. Otherwise, it returns FALSE.

Backtracking is controlled by parameter l, which determines at which step in the process of
generating the sequence of partitions for graphH the algorithm is. If at some step, the refinement
P l is VERTEX or SET, then the corresponding refinement is done for partition T and a new
partition T ′ is generated. If this new partition is compatible with S l+1, then a recursive call is
made to Match. If it succeeds, an isomorphism has been found. Otherwise, this is a dead-end
path, and the algorithm backtracks (returns FALSE) until it reaches a node in the search tree
with a feasible alternative.

A step with Rl = BACKTRACK establishes a point where a choice was made in the generation
of the target sequence of partitions. One of the vertices in the pivot set was chosen as the pivot
vertex for a vertex refinement. That means that every vertex in the corresponding pivot set TP l

must be tried, since the correspondence with the original pivot vertex might be found with any
of the vertices in the pivot set TP l . This is achieved with the loop in lines 9-19. If one choice
succeeds, the isomorphism has been found. Otherwise, other options are tried until no more
vertices are available. Then, the algorithm returns FALSE, so that other options at a previous
level should be tried. When every possible path has been tried unsuccessfully, the algorithm
returns FALSE indicating that graphs G and H are not isomorphic.

5.2 Example

In this section we will show how the algorithm works, for the graphs of Figure 5.1. They are
simple regular graphs which have some automorphisms but are not vertex-transitive. Since the
graph is regular but not vertex-transitive, backtracking will be necessary, at least for the first
refinement.
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Figure 5.1: Sample graphs for isomorphism testing.

The algorithm starts comparing the number of vertices in graphs G and H. Both have 8 vertices
and 12 edges. Hence, it computes the degree partitions DG and DH . Since all vertices in both
graphs have degree (3, 0, 0), we get:
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For graph G: DG = (D1) = ({0, 1, 2, 3, 4, 5, 6, 7}) with Deg(D1, G) = (3, 0, 0)
For graph H: DH = (E1) = ({0, 1, 2, 3, 4, 5, 6, 7}) with Deg(E1, H) = (3, 0, 0)

Once the degree partitions have been verified to be compatible (both have one cell andDeg(D1, G) =
Deg(E1, H)), a sequence of partitions will be generated for each graph, applying algorithm
GenerateSequenceOfPartitions.

5.2.1 Generation of the Sequence of Partitions for Graph G

Initially, algorithm GenerateSequenceOfPartitions sets S0 = DG = ({0, 1, 2, 3, 4, 5, 6, 7}), and
marks its only cell as not valid. Then it starts generating subsequent partitions. Since there
is no singleton cell, nor a valid cell, R0 is set to BACKTRACK and a vertex refinement is
performed using a vertex in cell S0

1 as the pivot vertex (hence, P 0 = 1). For simplicity, we will
choose the first vertex in the cell, though any of them could be chosen randomly. Taking vertex
0 as the pivot vertex, we obtain S1 = (S1

1 , S
1
2), where V 1 = {1, 2, 3, 4, 5, 6, 7}, and:

S1
1 = {1, 4, 6} with ADeg({1, 4, 6}, {0}, G) = (1, 0, 0) and Valid(S1

1) = TRUE
S1
2 = {2, 3, 5, 7} with ADeg({2, 3, 5, 7}, {0}, G) = (0, 0, 0) and Valid(S1

2) = TRUE

Both cells in S1 are valid since they are new. Therefore, they must be tried for a set refinement.
Algorithm IndexBestPivot selects them in increasing size order. Hence, it chooses S1

1 (P 1 = 1)
as the pivot set. Applying a set refinement to S1, we obtain a new partition S2 = (S2

1 , S
2
2 , S

2
3),

where V 2 = {1, 2, 3, 4, 5, 6, 7}, R1 = SET, and:

S2
1 = {1, 4, 6} with ADeg({1, 4, 6}, {1, 4, 6}, G) = (0, 0, 0) and Valid(S2

1) = FALSE
S2
2 = {5, 7} with ADeg({5, 7}, {1, 4, 6}, G) = (2, 0, 0) and Valid(S2

2) = TRUE
S2
3 = {2, 3} with ADeg({2, 3}, {1, 4, 6}, G) = (1, 0, 0) and Valid(S2

3) = TRUE

Again, since there are valid cells but no singleton ones, algorithm IndexBestPivot chooses S2
2

(P 2 = 2) as a pivot set for a set refinement. This yields a new partition S3 = (S3
1 , S

3
2 , S

3
3 , S

3
4),

where V 3 = {1, 2, 3, 4, 5, 6, 7}, R2 = SET, and:

S3
1 = {6} with ADeg({6}, {5, 7}, G) = (2, 0, 0) and Valid(S3

1) = TRUE
S3
2 = {1, 4} with ADeg({1, 4}, {5, 7}, G) = (1, 0, 0) and Valid(S3

2) = TRUE
S3
3 = {5, 7} with ADeg({5, 7}, {5, 7}, G) = (0, 0, 0) and Valid(S3

3) = FALSE
S3
4 = {2, 3} with ADeg({2, 3}, {5, 7}, G) = (1, 0, 0) and Valid(S3

4) = TRUE

Having a valid singleton cell S3
1 , it will be selected as the pivot set (P 3 = 1) for a vertex

refinement, what yields partition S4 = (S4
1 , S

4
2 , S

4
3), where V

4 = {1, 2, 3, 4, 5, 7}, R3 = VERTEX,
and:

S4
1 = {1, 4} with ADeg({1, 4}, {6}, G) = (0, 0, 0) and Valid(S4

1) = TRUE
S4
2 = {5, 7} with ADeg({5, 7}, {6}, G) = (1, 0, 0) and Valid(S4

2) = FALSE
S4
3 = {2, 3} with ADeg({2, 3}, {6}, G) = (0, 0, 0) and Valid(S4

3) = TRUE

This refinement has not been able to split any cell, but has discarded one cell (and one vertex),
what reduces the complexity of the problem. This leaves two valid cells to be tried for a set
refinement. However, none of them succeeds in splitting any cell. Hence, they are marked
non valid, and a vertex refinement is performed with S4

1 as the pivot set (P 4 = 1), setting
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R4 to BACKTRACK, and obtaining a new partition S5 = (S5
1 , S

5
2 , S

5
3 , S

5
4 , S

5
5), where V 5 =

{2, 3, 4, 5, 7}, and:

S5
1 = {4} with ADeg({4}, {1}, G) = (0, 0, 0) and Valid(S5

1) = TRUE
S5
2 = {7} with ADeg({7}, {1}, G) = (1, 0, 0) and Valid(S5

2) = TRUE
S5
3 = {5} with ADeg({5}, {1}, G) = (0, 0, 0) and Valid(S5

3) = TRUE
S5
4 = {2} with ADeg({2}, {1}, G) = (1, 0, 0) and Valid(S5

4) = TRUE
S5
5 = {3} with ADeg({3}, {1}, G) = (0, 0, 0) and Valid(S5

5) = TRUE

This partition has only singleton cells. Therefore, the algorithm stops, inducing the following
order on the vertices of the graph: 0, 6, 1, 4, 7, 5, 2, 3. This order can be used to define a mapping
between the vertices of the graphs, provided that an isomorphism is found.

5.2.2 Generation of the Sequence of Partitions for Graph H

The procedure is analogous to that for graph G. However, the sequence of partitions obtained
for graph H may be completely different from the one generated for graph G. Algorithm
GenerateSequenceOfPartitions starts setting S0 = DH = ({0, 1, 2, 3, 4, 5, 6, 7}), and marks its
only cell as not valid. Then, since there is not a valid cell, it sets R0 = BACKTRACK and
P 0 = 1, and performs a vertex refinement using vertex 0 as the pivot vertex, obtaining a partition
S1 = (S1

1 , S
1
2), where V 1 = {1, 2, 3, 4, 5, 6, 7}, and:

S1
1 = {1, 2, 7} with ADeg({1, 2, 7}, {0}, H) = (1, 0, 0) and Valid(S1

1) = TRUE
S1
2 = {3, 4, 5, 6} with ADeg({3, 4, 5, 6}, {0}, H) = (0, 0, 0) and Valid(S1

2) = TRUE

Since both cells are valid, they must be tried for a set refinement. Algorithm IndexBestPivot
sets P 1 = 1 (S1

1 is the smallest cell), and a set refinement is performed (R1 = SET), obtaining
a partition S2 = (S2

1 , S
2
2 , S

2
3), where V 2 = {1, 2, 3, 4, 5, 6, 7}, and:

S2
1 = {1, 2} with ADeg({1, 2}, {1, 2, 7}, H) = (1, 0, 0) and Valid(S2

1) = TRUE
S2
2 = {7} with ADeg({7}, {1, 2, 7}, H) = (0, 0, 0) and Valid(S2

2) = TRUE
S2
3 = {3, 4, 5, 6} with ADeg({3, 4, 5, 6}, {1, 2, 7}, H) = (1, 0, 0) and Valid(S2

3) = TRUE

Having a valid singleton cell S2
2 , it is chosen as the pivot set for a vertex refinement. Hence,

P 2 = 2, and R2 = VERTEX. A new partition S3 = (S3
1 , S

3
2 , S

3
3) is generated, where V 3 =

{1, 2, 3, 4, 5, 6}, and:

S3
1 = {1, 2} with ADeg({1, 2}, {7}, H) = (0, 0, 0) and Valid(S3

1) = TRUE
S3
2 = {5, 6} with ADeg({5, 6}, {7}, H) = (1, 0, 0) and Valid(S3

2) = TRUE
S3
3 = {3, 4} with ADeg({3, 4}, {7}, H) = (0, 0, 0) and Valid(S3

3) = TRUE

Now, since there are valid cells, they must be tried for a set refinement. However, none of
them succeeds in splitting at least one cell. Hence, they are all marked not valid, and a cell
(P 3 = 1) is chosen as the pivot set for a vertex refinement, with pivot vertex 1, and setting R3 =
BACKTRACK. This yields a new partition S4 = (S4

1 , S
4
2 , S

4
3 , S

4
4), where V 4 = {2, 3, 4, 5, 6},

and:
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S4
1 = {2} with ADeg({2}, {1}, H) = (1, 0, 0) and Valid(S4

1) = TRUE
S4
2 = {5, 6} with ADeg({5, 6}, {1}, H) = (0, 0, 0) and Valid(S4

2) = FALSE
S4
3 = {4} with ADeg({4}, {1}, H) = (1, 0, 0) and Valid(S4

3) = TRUE
S4
4 = {3} with ADeg({3}, {1}, H) = (0, 0, 0) and Valid(S4

4) = TRUE

Since there are singleton cells, algorithm IndexBestPivot selects the one, among them, with more
remaining links. Vertex 2 is adjacent to vertex 3 (one remaining link) and vertex 4 is adjacent
to vertices 3 and 5 (two remaining links), while vertex 3 is adjacent to vertices 2, 4, and 6.
Hence, P 4 and R4 are set to 4 and VERTEX respectively, and a vertex refinement is performed,
obtaining a new partition S5 = (S5

1 , S
5
2 , S

5
3 , S

5
4), where V 5 = {2, 4, 5, 6}, and:

S5
1 = {2} with ADeg({2}, {3}, H) = (1, 0, 0) and Valid(S5

1) = FALSE
S5
2 = {6} with ADeg({6}, {3}, H) = (1, 0, 0) and Valid(S5

2) = TRUE
S5
3 = {5} with ADeg({5}, {3}, H) = (0, 0, 0) and Valid(S5

3) = TRUE
S5
4 = {4} with ADeg({4}, {3}, H) = (1, 0, 0) and Valid(S5

4) = TRUE

Thus we get a partition with only singleton cells, and hence, the algorithm stops. This sequence
of partitions induces the following order on the vertices of graph H: 0, 7, 1, 3, 2, 6, 5, 4. It could
be used subsequently to define a mapping between the vertices of graphs G and H.

5.2.3 Finding a Sequence of Partitions Compatible with the Target

Once we have the sequences of partitions for both graphs, we choose the one with less backtrack-
ing points as the target. Since both sequences of partitions have two points of backtracking, any
of them would do. In this example, the algorithm chooses QG as the target, and uses algorithm
Match to try to find a sequence of partitions for graph H that is compatible with the target.

The algorithm starts form the degree partition T = DH = ({0, 1, 2, 3, 4, 5, 6, 7}), that is already
known to be compatible with DG. Since R0 = BACKTRACK, the vertices of the only cell in
partition ({0, 1, 2, 3, 4, 5, 6, 7}) will be tried in a loop until one succeeds, or all of them fail, in
which case the graphs are not isomorphic. For simplicity, we try the vertices in lexicographic
order. Then, with vertex 0 as the pivot vertex, a vertex refinement is performed, obtaining a
partition T ′ = (T ′

1, T
′
2), where W ′ = {1, 2, 3, 4, 5, 6, 7}, and:

T ′
1 = {1, 2, 7} with ADeg({1, 2, 7}, {0}, H) = (1, 0, 0)

T ′
2 = {3, 4, 5, 6} with ADeg({3, 4, 5, 6}, {0}, H) = (0, 0, 0)

Since this partition is compatible with the target partition S1, a recursive call is made to
algorithm Match to generate the next partition in the sequence. At this new stage, R1 = SET.
Hence, a set refinement is performed using cell {1, 2, 7} as the pivot set (remember that P 1 = 1).
This yields a partition T ′ = (T ′

1, T
′
2, T

′
3), where W ′ = {1, 2, 3, 4, 5, 6, 7}, and:

T ′
1 = {1, 2} with ADeg({1, 2}, {1, 2, 7}, H) = (1, 0, 0)

T ′
2 = {7} with ADeg({7}, {1, 2, 7}, H) = (0, 0, 0)

T ′
3 = {3, 4, 5, 6} with ADeg({3, 4, 5, 6}, {1, 2, 7}, H) = (1, 0, 0)

This partition is not compatible with the target. In the target, the second cell was split, while
in this one, it is the first one which has been split. Hence, the algorithm backtracks (returns
FALSE) to a step l, such that Rl = BACKTRACK. In this example, this happens for l = 0. In
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line 15 in algorithm Match, variable success gets value FALSE, and the loop is repeated since
there are still other vertices to be tried. Next, vertex 1 is chosen as the pivot vertex and a vertex
refinement is performed, yielding a new partition T ′ = (T ′

1, T
′
2), where W ′ = {0, 2, 3, 4, 5, 6, 7},

and:

T ′
1 = {0, 2, 4} with ADeg({0, 2, 4}, {1}, H) = (1, 0, 0)

T ′
2 = {3, 5, 6, 7} with ADeg({3, 5, 6, 7}, {1}, H) = (0, 0, 0)

This partition is compatible with the target, so a recursive call is made to generate the next
partition in the sequence. Now, recall that R1 = SET and P 1 = 1. Hence, a set refinement
is performed using cell {0, 2, 4} as the pivot set for a set refinement. Thus, we obtain a new
partition T ′ = (T ′

1, T
′
2, T

′
3, T

′
4, T

′
5), where W ′ = {0, 2, 3, 4, 5, 6, 7}, and:

T ′
1 = {0, 2} with ADeg({0, 2}, {0, 2, 4}, H) = (1, 0, 0)

T ′
2 = {4} with ADeg({4}, {0, 2, 4}, H) = (0, 0, 0)

T ′
3 = {3} with ADeg({3}, {0, 2, 4}, H) = (2, 0, 0)

T ′
4 = {5, 7} with ADeg({5, 7}, {0, 2, 4}, H) = (1, 0, 0)

T ′
5 = {6} with ADeg({6}, {0, 2, 4}, H) = (0, 0, 0)

Again, we obtain a partition that is not compatible with the target. Hence, the algorithm back-
tracks to level l = 0, to choose a different pivot vertex. This time it takes vertex 2 and performs
a vertex refinement. This yields a partition T ′ = (T ′

1, T
′
2), where W ′ = {0, 1, 3, 4, 5, 6, 7}, and:

T ′
1 = {0, 1, 3} with ADeg({0, 1, 3}, {2}, H) = (1, 0, 0)

T ′
2 = {4, 5, 6, 7} with ADeg({4, 5, 6, 7}, {2}, H) = (0, 0, 0)

This partition is again compatible with the target (since the graph is regular, every vertex in this
graph has three adjacent vertices), so a recursive call is made to perform the next refinement.
Since R1 = SET and P 1 = 1, a set refinement is performed with pivot cell {0, 1, 3}, obtaining a
new partition T ′ = (T ′

1, T
′
2, T

′
3, T

′
4, T

′
5), where W ′ = {0, 1, 3, 4, 5, 6, 7}, and:

T ′
1 = {0, 1} with ADeg({0, 1}, {0, 1, 3}, H) = (1, 0, 0)

T ′
2 = {3} with ADeg({3}, {0, 1, 3}, H) = (0, 0, 0)

T ′
3 = {4} with ADeg({4}, {0, 1, 3}, H) = (2, 0, 0)

T ′
4 = {6, 7} with ADeg({6, 7}, {0, 1, 3}, H) = (1, 0, 0)

T ′
5 = {5} with ADeg({5}, {0, 1, 3}, H) = (0, 0, 0)

This is an incompatible partition, and backtracking is again necessary. Note that this partition
looks much like the one just discarded. It looks like with automorphism detection, this path
could have been avoided in advance. Now, another vertex must be tried for a vertex refinement
at backtracking point l = 0. Proceeding in lexicographic order, vertex 3 is chosen. After the
vertex refinement, a new partition T ′ = (T ′

1, T
′
2) is obtained, where W

′ = {0, 1, 2, 4, 5, 6, 7}, and:

T ′
1 = {2, 4, 6} with ADeg({2, 4, 6}, {3}, H) = (1, 0, 0)

T ′
2 = {0, 1, 5, 7} with ADeg({0, 1, 5, 7}, {3}, H) = (0, 0, 0)

Since this partition is compatible with the target, a recursive call is made to process the next
partition in the sequence. Now, a set refinement will be performed with pivot set {2, 4, 6}. Thus
we get a new partition T ′ = (T ′

1, T
′
2, T

′
3), where W ′ = {0, 1, 2, 4, 5, 6, 7}, and:
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T ′
1 = {2, 4, 6} with ADeg({2, 4, 6}, {2, 4, 6}, H) = (0, 0, 0)

T ′
2 = {1, 5} with ADeg({1, 5}, {2, 4, 6}, H) = (2, 0, 0)

T ′
3 = {0, 7} with ADeg({0, 7}, {2, 4, 6}, H) = (1, 0, 0)

This partition is finally compatible with the target and a recursive call is made to proceed to
the next level. Here, since P 2 = 2 and R2 = SET, pivot cell {1, 5} is used for a set refinement,
what yields a new partition T ′ = (T ′

1, T
′
2, T

′
3, T

′
4), where W ′ = {0, 1, 2, 4, 5, 6, 7}, and:

T ′
1 = {4} with ADeg({4}, {1, 5}, H) = (2, 0, 0)

T ′
2 = {2, 6} with ADeg({2, 6}, {1, 5}, H) = (1, 0, 0)

T ′
3 = {1, 5} with ADeg({1, 5}, {1, 5}, H) = (0, 0, 0)

T ′
4 = {0, 7} with ADeg({0, 7}, {1, 5}, H) = (1, 0, 0)

Again, we get a compatible partition, and recursively proceed to the next level. Here, P 3 = 1 and
R3 = VERTEX. Hence, using vertex 4, a vertex refinement is performed, and a new partition
T ′ = (T ′

1, T
′
2, T

′
3) is obtained, where W ′ = {0, 1, 2, 5, 6, 7}, and:

T ′
1 = {2, 6} with ADeg({2, 6}, {4}, H) = (0, 0, 0)

T ′
2 = {1, 5} with ADeg({1, 5}, {4}, H) = (1, 0, 0)

T ′
3 = {0, 7} with ADeg({0, 7}, {4}, H) = (0, 0, 0)

This partition is also compatible with the target. Therefore, a recursive call is made to process
the next level. At this level, P 4 = 1 andR4 = BACKTRACK. Hence, in lexicographic order, ver-
tex 2 will be chosen for a vertex refinement. This yields a new partition T ′ = (T ′

1, T
′
2, T

′
3, T

′
4, T

′
5),

where W ′ = {0, 1, 5, 6, 7}, and:

T ′
1 = {6} with ADeg({6}, {2}, H) = (0, 0, 0)

T ′
2 = {1} with ADeg({1}, {2}, H) = (1, 0, 0)

T ′
2 = {5} with ADeg({5}, {2}, H) = (0, 0, 0)

T ′
3 = {0} with ADeg({0}, {2}, H) = (1, 0, 0)

T ′
3 = {7} with ADeg({7}, {2}, H) = (0, 0, 0)

Thus we get to the final partition, which is compatible with the target. Since t = 5, the final
test in line 5 of algorithm Match is performed. Note that although the test has been defined in
terms of available degree (for uniformity with the rest) it is equivalent to test the adjacencies
among the vertices in the corresponding cells. Figure 5.2 shows these adjacencies, where it is
easy to see the correspondence between the vertices of this final partition with the target. This
completes the search for the isomorphism and algorithm Match returns TRUE.

6 1 5 0 77 324 5

Adjacencies in the target partition Adjacencies in the last partition

Figure 5.2: Equivalence of the final partitions.

Although the algorithm does not generate a correspondence between the vertices in graph G
and the vertices in graph H, it is easy to derive it from the orderings induced by the sequences
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of partitions generated. This correspondence is the following:

Graph G 0 6 1 4 7 5 2 3
Graph H 3 4 2 6 1 5 0 7

It is easy to imagine that testing a graph with itself for isomorphism with this algorithm is
straightforward. However, depending on the way the vertices of the second graph are numbered
(with respect to the first) finding the isomorphism between them can be much harder, and much
more backtracking may be needed. Randomizing the order in which vertices are tried at the
points where backtracking is needed may lead to a more uniform behavior.

5.3 Correctness of the Algorithm

In this section we show that the proposed algorithm correctly determines whether two graphs are
isomorphic. The algorithm generates compatible sequences of partitions for both graphs being
tested. We will prove that compatible sequences of partitions induce an isomorphism between
the graphs, and that, if such compatible sequences of partitions exist, our algorithm is able to
find them.

Lemma 5.1 Let G = (VG, RG) and H = (VH , RH) be two isomorphic graphs. Then, there are
two compatible sequences of partitions QG = (SG,RG,PG), and QH = (SH ,RH ,PH) for graphs
G and H, respectively.

Proof: Let QG = (SG,RG,PG) be any sequence of partitions for graph G. Let SG = (S0, ...,St),
S0 = DegreePartition(G), RG = (R0

G, ..., R
t−1
G ), and PG = (P 0

G, ..., P
t−1
G ), and for all i ∈ {0, ..., t},

let Si = (Si
1, ..., S

i
ri), and V i =

⋃ri
j=1 S

i
j .

Letm be a mapping of the vertices of VG onto the vertices of VH that preserves the (m exists since
G and H are isomorphic). Then we will generate a sequence of partitions QH = (SH ,RH ,PH)
for graph H which is compatible with QG. Let SH = (T 0, ..., T t), RH = (R0

G, ..., R
t−1
G ) (the

same type of refinement is performed at each step), and PH = (P 0
G, ..., P

t−1
G ) (corresponding

pivot sets are used at each refinement). Moreover, for all i ∈ {0, ..., t}, m maps the vertices in
corresponding cells of Si and T i.

Let T 0 = DegreePartition(H). Note that, since G and H are isomorphic, S0 and T 0 must be
compatible (the number of vertices of each degree must be the same for both graphs). Hence,
|S0| = |T 0|. Let S0 = (S0

1 , ..., S
0
r ), and T 0 = (T 0

1 , ..., T
0
r ). Then, m maps the vertices in Si to

the vertices in Ti, for all i ∈ {1, ..., r}.
Now, by induction, we assume that compatibility exists up to partitions S l and T l, i.e. for all
i ∈ {0, ..., l} partitions Si and T i are compatible, and m maps the vertices in corresponding cells
of Si and T i. Then we generate partition T l+1 and prove that it is compatible with S l+1, and
that m still maps the vertices in corresponding cells of S l+1 and T l+1.

Note first that if a cell Sl
s was discarded when deriving S l+1 from S l, that was because it had

no remaining links. Since S l and T l are compatible, T l
s can not have links either, and will also

be discarded in T l+1. Then, depending on the value of Rl, three different cases arise in the
generation of partition S l+1 from S l:

1. Rl = VERTEX.

2. Rl = SET.
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3. Rl = BACKTRACK.

In Case 1, for graph H, we can generate a new partition T l+1 from T l using vertex refinement
with the pivot set T l

P l , which contains a single vertex, image under m of the only vertex in Sl
P l

(from the induction hypothesis). Let S l = (Sl
1, ..., S

l
r), and T l = (T l

1, ..., T
l
r). Also from the

induction hypothesis, the vertices in cell Sl
i ∈ S l are mapped under m to the vertices in cell

T l
i ∈ T l for all i ∈ {1, ..., r}. Hence, if the pivot vertex in Sl

P l has a certain kind of link with k

vertices in some cell Sl
i, then the vertex in T l

P l must also have a link of that kind with k vertices

in cell T l
i . Otherwise, there would be vertices in Sl

i which could not be mapped by m to vertices
in T l

i for having different adjacencies with the corresponding pivot vertices. Therefore, the new
cells generated will have the same number of vertices, and their vertices will have the same kind
of adjacency with the respective pivot vertex, as their corresponding cells in S l+1. Hence, the
new partition T l+1 must be compatible with partition S l+1, and the vertices every cell of S l+1

can only be mapped by m, to the vertices in its corresponding cell in T l+1.

In Case 2, we generate partition T l+1 using set refinement with the corresponding pivot set
T l
P l . By the induction hypothesis, cells Sl

P l and T l
P l must have the same adjacencies with the

corresponding cells in partitions S l and T l respectively. Therefore, the new cells generated will
have the same adjacencies with the pivot set in both graphs. Hence, the new cells in S l+1 must
be mapped by m to the corresponding new cells in T l+1, and partitions S l+1 and T l+1 must be
compatible.

In Case 3, let p be the pivot vertex chosen from cell Sl
P l for the vertex refinement applied to

partition S l. This vertex could be mapped bym to any vertex in T l
P l . However, one of them must

be m(p) since S l and T l are compatible and, from the induction hypothesis, the vertices in Sl
P l

can only be mapped to vertices in T l
P l . Using m(p) as the pivot vertex, it is possible to generate

a new partition T l+1 compatible with S l+1 since p and m(p) have the same adjacencies with the
corresponding cells in partitions S l and T l respectively, as in Case 1. Hence, the new partition
T l+1 must be compatible with partition S l+1, and m maps the vertices in corresponding cells
in S l+1 and T l+1.

This way, we reach partitions St and T t. Compatibility of these final partitions is straight-
forward. Since all cells with remaining links are singleton ones, and m maps the vertices in
corresponding cells, the adjacency between any two vertices v and w in singleton cells of par-
tition St must be the same as the adjacency between m(v) and m(w) (corresponding cells) in
partition T t. Thus, we complete the proof.

Lemma 5.2 Let G = (VG, RG) and H = (VH , RH) be two graphs, |VG| = |VH | = n. Let
QG = (SG,RG,PG), and QH = (SH ,RH ,PH) be two compatible sequences of partitions for graphs
G and H respectively. Let ≤QG

be the order induced by QG on the vertices of VG, and let ≤QH

be the order induced by QH on the vertices of VH . Then, graphs G and H are isomorphic, and
mapping m defined as m(ωQG

(i)) = ωQH
(i) for all i ∈ {1, ..., |VG|} is an isomorphism of G and

H.

Proof: Let Adj(G) = A, and Adj(H) = B. Let SG = (S0, ...,St) and TG = (T 0, ..., T t). Since
QG and QH are compatible sequences of partitions, their final partitions must also be compatible.
Let St = (St

1, ..., S
t
r) and T t = (T t

1, ..., T
t
r) be the final partitions, and let |V t

G| = |V t
H | = s. Then,

from Definition 4.14, we know that for all x, y ∈ {1, ..., r},ADeg(St
x, S

t
y, G) = ADeg(T t

x, T
t
y, H).

Since all non-singleton cells in the final partitions have no remaining links, this means that for
all i, j ∈ {1, ..., s}, AωQG

(n−s+i),ωQG
(n−s+j) = BωQH

(n−s+i),ωQH
(n−s+j). Hence, subgraphs GV t

G
and
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HV t
H
are isomorphic, and mapping m restricted to the vertices in V t

G and V t
H is an isomorphism

of them.

Now, by induction, we assume that subgraphs GV l
G
and HV l

H
are isomorphic, and mapping m

restricted to the vertices in V l
G and V l

H is an isomorphism of them. Then, we add the vertices
in V l−1

G \ V l
G and V l−1

H \ V l
H , and prove that subgraphs GV l−1

G
and HV l−1

H
are isomorphic, and

mapping m restricted to the vertices in V l−1
G and V l−1

H is an isomorphism of them.

Note first that the vertices in V l−1
G \ V l

G and V l−1
H \V l

H come from cells with no remaining links,
or they are the pivot vertices used in the refinement, in case partitions S l and T l are a vertex
refinement of partitions S l−1 and T l−1, respectively.

Let W l−1
G = {v ∈ V l−1

G : ¬HasLinks({v}, V l−1
G , G)} the set of vertices with no remaining links in

V l−1
G , and W l−1

H = {v ∈ V l−1
H : ¬HasLinks({v}, V l−1

H , H)} the set of vertices with no remaining

links in V l−1
H . It is easy to see that GW l−1

G ∪V l
G
and HW l−1

H ∪V l
H

are isomorphic (adding the same

number of isolated vertices to two isomorphic graphs yields two isomorphic graphs). Clearly,
mapping m restricted to the vertices in W l−1

G ∪ V l
G and W l−1

H ∪ V l
H is an isomorphism of them,

since it is when restricted to the vertices in V l
G and V l

H (from the induction hypothesis). Note
that the vertices in W l−1

G precede all the vertices in V l
G in order ≤QG

, and the vertices in W l−1
H

precede all the vertices in V l
H in order ≤QH

. Hence, m maps he vertices in W l−1
G to the vertices

in W l−1
H .

In case partitions S l and T l are a vertex refinement of partitions S l−1 and T l−1 respectively, let
v and w be the pivot vertices used in the refinement of partitions S l−1 and T l−1 respectively.
Clearly, v ∈ V l−1

G but v 6∈ V l
G, and w ∈ V l−1

H but w 6∈ V l
H . Besides, since partitions S l−1

and S l are compatible with T l−1 and T l respectively, for all x ∈ {1, ..., r},ADeg({v}, Sl
x, G) =

ADeg({w}, T l
x, H). Hence, mapping m restricted to {v}∪V l

G and {w}∪V l
H is an isomorphism of

G{v}∪V l
G
and H{w}∪V l

H
. Note that v precedes all the vertices in V l

G in order ≤QG
, and w precedes

all the vertices in V l
H in order ≤QH

. Hence, m(v) = w.

Consequently, if m restricted to the vertices in V l
G and V l

H is an isomorphism of GV l
G
and HV l

H
,

it must also be when extended to the vertices in V l−1
G and V l−1

H , thus proving our claim.

Theorem 5.1 Two graphs G and H are isomorphic if and only if there are two compatible
sequences of partitions QG and QH for graphs G and H respectively.

Proof: It follows directly from Lemmas 5.1 and 5.2.

Now, to prove that our algorithm correctly determines if two graphs G and H are isomorphic
or not, it is enough to prove that it tests every possible sequence of partitions for one of the
graphs against one sequence of partitions for the other graph. Thus, if it is not able to find a
compatible one, that is because no such sequence of partitions exist.

Theorem 5.2 Two graphs G and H are isomorphic if and only if AreIsomorphic(G,H) returns
TRUE.

Proof: If graphs G and H do not have the same number of vertices and arcs, or their degree
partitions are not compatible, they can not be isomorphic, and algorithm AreIsomorphic returns
FALSE. If their degree partitions are compatible, a sequence of partitions is generated for each
graph. The one with less backtracking points is chosen as the target. Then algorithm Match
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is used to search for a sequence of partitions, that is compatible with the target, for the other
graph. This sequence of partitions starts from its degree partition, which is already known to
be compatible with the target degree partition. In the search process, three cases may arise:

1. Rl = VERTEX.

2. Rl = SET.

3. Rl = BACKTRACK.

In Case 1, Match performs a vertex refinement with the corresponding pivot set, and tests the
new partition for compatibility with the target. If they are compatible, it follows that branch
in the search tree. If they are not compatible, it backtracks looking for an unexplored branch
in the search tree. In this case, this branch can not yield a compatible sequence of partitions
and there is no other alternative at this point, since the pivot cell has only one vertex and the
target pivot vertex must be mapped to the vertex just tried.

In Case 2, Match applies a set refinement with the corresponding pivot set, testing the new
partition for compatibility, and taking the same actions as in the previous case. Here again,
there is no other possible choice.

In Case 3, any of the vertices in the pivot set may match the target pivot vertex, and only those
that belong to the pivot set, since a vertex can only be mapped to vertices in its corresponding
cell (if some of them does). Therefore, every vertex in the pivot set will be tried, generating
every possible sequence of partitions from this point in the search (all possible branches are
explored). If none of them matches the target sequence of partitions, backtracking is performed.

This simple backtracking algorithm clearly follows every feasible path in the search tree. Hence,
if it is possible to generate a sequence of partitions compatible with the target, it will find it and
return TRUE. If it can not find such a sequence of partitions, that is because such a sequence
does not exist, and it returns FALSE. Hence, from Theorem 5.1, graphs G and H are isomorphic
if and only if AreIsomorphic(G,H) returns TRUE.

5.4 Performance Evaluation

In this section we compare the performance of an implementation of our basic algorithm, which
we call sinauto, with the two other programs of reference: nauty and vf2. The tests have been
carried out on a Pentium III at 1.0 GHz with 256 MB of main memory, under Linux RedHat 9.0.
All the programs have been compiled with the same compiler, GNU’s gcc, and using the same
optimization options. The execution time considered is the real time (not CPU time) consumed
by the programs, excluding the loading time (the time needed by the programs to load from disk
the graphs being tested). The CPU time limit for each program run was set to 10000 seconds.
If a program was unable to finish within this CPU time limit for a pair of graphs of some size,
no more tests for that or bigger size were performed for that program, and all previous results
for that graph size and program were discarded.

The simplest graphs included in the tests are random graphs. They are very simple, unstruc-
tured, and are not likely to have automorphisms. Hence, simple vertex classification is, with very
high probability, enough to verify isomorphism. We have only considered isomorphic graphs,
since non-isomorphism of random graphs is very easy to discover. The results for directed and
undirected graphs are shown in Figure 5.3. These graphs are easy for all algorithms considered,
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Figure 5.3: Performance of sinauto with isomorphic randomly connected graphs.

as expected. However, vf2 is one order of magnitude worse than the other two programs, nauty
being the fastest. The explanation may be that nauty is faster than sinauto in obtaining the
discrete partition of the vertices.
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Figure 5.4: Performance of sinauto with isomorphic 2D-meshes.

While the behavior of the three programs is very similar for the directed and the undirected
versions of the random graphs, this is not the case for 2D-meshes, as it can be seen in figure
5.4. First of all, the poor performance of version 2.0 of nauty with directed 2D-meshes is quite
remarkable (it seems exponential) as it was already known [62]. However, version 2.2 fixes the
problem and seems to perform polynomially for this family of graphs (which is a considerable
improvement). Nevertheless, it is still, in the largest case considered, two orders of magnitude
worse than vf2, and also worse than sinauto. What is surprising to us is that nauty works much
better with the undirected versions of the graphs (both 2.0 and 2.2 versions), than with the
directed versions, although in the latter, it has more information usable for vertex classification.
Directed graphs are a well known weakness of nauty that is being overcome in some cases. On
the contrary, vf2 is much faster (two orders of magnitude in the largest case considered) with
the directed version than with the undirected version. This means that, while it is much better
than the others for the directed version, it is the worst for the undirected one. With a uniform
behavior combined with good overall performance, we have sinauto.

The performance for Miyazaki’s graphs is shown in Figures 5.5 (isomorphic cases) and 5.6 (non-
isomorphic cases). Miyazaki’s graphs are known to be very hard graphs for nauty [54]. In
fact, with the directed version, it was not able to handle graphs with only 40 vertices in 10000
seconds. That is why there is only one point in the corresponding plots for nauty. In the case
of undirected graphs, nauty performs better, but although it starts quite well, its performance
degrades considerably when graphs reach 400 vertices. Since nauty computes canonical forms
of both graphs, it behaves uniformly for isomorphic and non-isomorphic graphs. This is not the
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Figure 5.5: Performance of sinauto with isomorphic Miyazaki’s Fürer gadgets.
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Figure 5.6: Performance of sinauto with non-isomorphic Miyazaki’s Fürer gadgets.

case for the other two algorithms.

These graphs also seem to make vf2 exponential in time. However, perhaps due to the way
(order) it selects the pivot sets, the positive cases of directed graphs are relatively simple for
sinauto. Yet, when the graphs are not isomorphic, sinauto seems also exponential in time. This
difference in its behavior is due to its inability to detect automorphisms, what makes it explore
automorphic unsuccessful paths in the search tree. Clearly, adding automorphism management
to sinauto would certainly improve its performance. It is also clear that the undirected versions
are much harder for sinauto than the directed ones.
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Figure 5.7: Performance of sinauto with Paley graphs.

The results obtained for Paley graphs are shown in Figure 5.7. It can be seen that vf2 is much
slower than sinauto and nauty. For Paley graphs generated from finite fields of prime size it
is three orders of magnitude slower than the others, for the largest case considered. For Paley
graphs from finite fields of prime square size, the difference is a bit smaller since these graphs
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are slightly harder for sinauto and nauty. Yet, all of them seem to be polynomial in time for
this family of graphs.
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Figure 5.8: Performance of sinauto with triangular and lattice graphs.

Figure 5.8 shows the results for triangular graphs and lattice graphs. For these families of
graphs, vf2 is one order of magnitude faster than sinauto and nauty, which have a very similar
behavior. It seems that the high degree of regularity makes it easy to find the automorphism
in a direct way. Applying refinement techniques may be slower in this case, but should yield a
more uniform behavior among different families of graphs.
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Figure 5.9: Performance of sinauto with Latin square graphs.

The next family we explore are Latin square graphs. These are much harder than other families
of strongly regular graphs when automorphism detection is not used. Besides, it is possible to
generate non-isomorphic pairs of Latin square graphs with the same parameters. This makes no
difference for nauty, since it computes canonical forms of the graphs and it does not compare
them directly. Consequently, it has exactly the same behavior for positive and negative tests,
as it can be seen in Figure 5.9. That is not the case for the others. In particular, vf2 seems to
be exponential in time for both cases, and specifically with the negative tests, it is four orders
of magnitude slower than with the positive ones. This is due to the high degree of similarity
of the graphs being compared (vf2 can not easily discard possible matchings between pairs of
vertices).

The case of sinauto is quite different from the others. It seems to be polynomial in both cases,
but it finds much harder to deal with non-isomorphic graphs (almost four orders of magnitude).
This is due to the large number of unsuccessful automorphic paths in the search tree it follows.
Adding automorphism detection must improve its performance considerably.

In Figures 5.10 and 5.11, the results for unions of tripartite graphs are shown. Again, like in
the case of Latin square graphs, we have made both positive and negative tests. Besides, for
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Figure 5.10: Performance of sinauto with isomorphic unions of tripartite graphs.
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Figure 5.11: Performance of sinauto with non-isomorphic unions of tripartite graphs.

this family, directed and undirected versions of the graphs have also been generated. For the
negative tests, we have used graphs that do not have the same number of isomorphic connected
components. One graph has the same number of each connected component while the other
has one less of one of the components and one more of the other. This difference explains the
difference in the behavior of nauty between the positive and the negative tests, unlike other
cases (in general, the behavior of nauty does not depend on the graphs tested being isomorphic
or not).

With this family of graphs, vf2 is only able to finish within the 10000 seconds time limit imposed
for the tests with the smallest graphs (those with only two components). This shows how hard
it is to process these graphs for this algorithm.

Among positive tests (Figure 5.10), nauty is much faster for the undirected version of the graphs,
than for the directed ones (for the directed version it can only finish within the time limit with
graphs with only one component). Yet, it seems to be exponential in time in both cases. This
is not the case of sinauto. For these positive tests, it looks polynomial.

The negative cases (Figure 5.11) are amongst the hardest cases for all the algorithms considered
in the tests. Only sinauto can deal with graphs of more than two components. However, all
of them seem to be exponential in time. Since sinauto looks polynomial for positive tests, we
believe that adding automorphism detection to sinauto should make it polynomial, also for
negative tests.

Figure 5.12 shows the results for unions of strongly regular graphs with the same parameters.
These graphs are already known to make nauty exponential in time (cf. [54]). For vf2, they
are so hard, that it can only finish within time with graphs with one component. Since sinauto
looks polynomial for the positive cases, we expect it to be also polynomial for the negative ones,
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Figure 5.12: Performance of sinauto with unions of strongly regular graphs.
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Figure 5.13: Performance of sinauto with point-line graphs of Desarguesian projective planes.

The results for the point-line graphs of Desarguesian projective planes are shown in Figure 5.13.
They are known to be very hard for isomorphism, and, although we only consider positive cases,
all the algorithms seem to be exponential for this family of graphs, being sinauto the slowest
of the three. None of them is able to deal with graphs of more than 200 vertices. The number
of paths in the search tree to be followed by these algorithms may be related with Miller’s
O(nlog log n+O(1)) bound for isomorphism of projective planes [52].

In the evaluation presented, only the average time has been shown. However, it may be very
interesting to study other statistical parameters like the standard deviation, the maximum and
the minimum time needed for each graph size, etc., since uniform behavior would be a desirable
property of an isomorphism testing program. This will be done for the last algorithm proposed.
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Chapter 6

Using Automorphisms

In this chapter, an improved version of the algorithm is presented, in which a partial search for
automorphisms will be performed on the graphs, after their respective sequences of partitions
have been generated. This automorphism discovery process will be used to eliminate some
backtracking points, and to discard, during the search for a sequence of partitions compatible
with the target, vertices that are known to be equivalent to other vertices already discarded, at
some backtracking point. First, the theoretic background that supports this improvement will
be exposed.

6.1 Theoretical Background

The notion of equivalence among vertices in a graph is essential for automorphism management.
It will be used to eliminate backtracking points, to prune the search for automorphisms, and to
prune the search for a sequence of partitions compatible with the target.

Definition 6.1 Let G = (V,R) be a graph, and let u, v ∈ V . Vertices u and v are equivalent
if there is an automorphism m of G that permutes u and v, i.e. m(u) = v. A vertex w ∈ V is
fixed by m if m(w) = w.

When two vertices are equivalent, they are said to belong to the same orbit. The set of all its
orbits defines a partition of the vertices of a graph. When the whole automorphism group of
a graph has been computed, all the vertices are correctly classified into their respective orbits,
and the resulting partition is called the orbit partition. If a graph is vertex transitive, then all
its vertices belong to the same orbit, so the orbit partition has only one orbit.

Our algorithm performs a partial computation of the orbit partition. The orbit partition will be
computed incrementally, starting from the singleton partition. Since our algorithm performs a
limited search for automorphisms, it is possible that it stops before the orbit partition is really
found. Therefore, we will introduce the notion of semiorbit.

Definition 6.2 Let G = (V,R) be a graph, and let v ∈ V . A semiorbit S of v is any subset of
V such that for all u ∈ S, u and v are equivalent, i.e., a semiorbit of v is any subset of the orbit
of v.

Definition 6.3 Let G = (V,R) be a graph. A semiorbit partition of G is any partition O =
{O1, ..., On} of V , such that for all i ∈ {1, ..., n}, v, u ∈ Oi implies that v and u are equivalent.

43



Now, we will show some ways to infer vertex equivalence during the generation of a sequence of
partitions for a graph, and how the compatibility of sequences of partitions implies equivalence
of vertices.

Lemma 6.1 Let QG = (S,R,P) be a sequence of partitions for graph G, such that S = (S0, ...,St),
R = (R0, ..., Rt−1), and P = (P 0, ..., P t−1). Let l ∈ {1, ..., t}, S l = (Sl

1, ..., S
l
rl
), and V l =

⋃rl
i=1 S

l
i,

such that there is some k ∈ {1, ..., rl} with NumLinks(Sl
k, V

l, G) = 0 and |Sl
k| > 1. Then, for all

u, v ∈ Sl
k, u and v are equivalent.

Proof: If u and v belong to the same cell Sl
k, none of the vertices previously discarded in the

sequence of partitions has been able to distinguish them. Hence, their adjacencies are the same
with all the previously discarded vertices. Besides, since they have no remaining links, they
are not adjacent to any vertex in V l, and they are discarded at this stage in the refinement
process. Therefore, permuting u and v and fixing all the other vertices of graph G, we obtain
an automorphism of G. Hence, u and v are equivalent.

This way, some equivalences may be detected using only one sequence of partitions. However,
most equivalences are detected using two sequences of partitions. From Lemma 5.2 and the
definition of automorphism, it follows that two compatible sequences of partitions for a graph
G define an automorphism of G.

During the generation of a sequence of partitions for a graph G, backtracking points may
arise. Let QG = (S,R,P) be a sequence of partitions for graph G. Let S = (S0, ...,St),
R = (R0, ..., Rt−1), P = (P 0, ..., P t−1). Let us assume that Rl = BACKTRACK for some
l ∈ {0, ..., t − 1}. Then, let S l = (Sl

1, ..., S
l
rl
) and let u ∈ Sl

P l be the pivot vertex used for the

vertex refinement at stage l. Let v ∈ Sl
P l , u 6= v, be another vertex in the pivot set. Let Q′

G

be a sequence of partitions compatible with QG, generated using vertex v instead of vertex u,
at stage l. Note that QG and Q′

G are equal up to level l. Let ≤QG
be the order induced by QG

on the vertices of V , and let ≤Q′

G
be the order induced by Q′

G on the same set of vertices V .

Let ωQG
(i) denote the ith vertex with respect to ≤QG

, and ωQ′

G
(i) denote the ith vertex with

respect to ≤Q′

G
. Then, mapping m, defined as m(ωQG

(i)) = ωQ′

G
(i) for all i ∈ {1, ..., |V |}, is an

automorphism of G. Mapping m satisfies that u = ωQG
(k), v = ωQ′

G
(k), for some k ∈ {1, ..., |V |}.

Then:

Lemma 6.2 For all j ∈ {k, ..., |V |}, ωQG
(j) and ωQ′

G
(j) are equivalent, and m fixes vertices

ωQG
(1), ..., ωQG

(k − 1), i.e. they are pairwise equal to ωQ′

G
(1), ..., ωQ′

G
(k − 1).

While the equivalence stated in Lemma 6.1 is somewhat universal, i.e., the automorphism dis-
covered fixes the rest of the vertices in the graph, the equivalences stated in Lemma 6.2 rely on
the fact that only the vertices previously discarded are fixed by the automorphism discovered,
and it is not known if fixing other vertices the equivalence still holds. Nevertheless, already found
vertex equivalences may be used to prune future searches provided that backtracking points are
explored in a certain order.

Definition 6.4 Let G = (V,R) be a graph. Two vertices u, v ∈ V are equivalent at level l if
there is an automorphism of G that permutes them, and fixes all the vertices in V \ V l.

Lemma 6.3 If two vertices u and v are equivalent at level l, then they are equivalent at any
level i ∈ {0, ..., l − 1}.
Proof: Let u and v be two vertices that are equivalent at level l. This means that the two
compatible sequences of partitions that determined their equivalence share the first l levels.
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Therefore, from Lemma 6.2, the vertices in V \ V l are fixed by the automorphism induced
by these sequences of partitions. Let us call this automorphism m. Since V l ⊆ V i for all
i ∈ {0, ..., l− 1}, (V \ V i) ⊆ (V \ V l). Hence, there is an automorphism that maps u and v, and
fixes the vertices in V \ V i, e.g. m.

Remark 6.1 Let u and v be two vertices that are equivalent at level l. If u is equivalent to p at
level l, then v and p are also equivalent at level l, and if u is not equivalent to p at level l, then
v and p are not equivalent at level l.

Proof: If u and v are equivalent at level l, that is because there is an automorphism m that
permutes u and v, and fixes all the vertices in V \ V l. If u and p are equivalent at level l, then
there is an automorphism m′ that permutes u and p, and fixes all the vertices in V \ V l. Since
m′(u) = p, m′(m(v)) = p. Hence, the composition of m and m′ yields an automorphism of v
and p that fixes all the vertices in V \ V l, since both automorphisms fixed them.

By the reverse argument, if there is no automorphism that fixes the vertices in V \ V l and
permutes u and p, then one can conclude that there is no automorphism that fixes the ver-
tices in V \ V l and permutes v and p. Otherwise, if there were such an automorphism m′

such that m′(p) = v, then we could apply automorphism m, to get that m(m′(p)) = m(v), i.e.
m(m′(p)) = u, and all the vertices in V \ V l would be fixed, since they were fixed by both
automorphisms. Thus we reach a contradiction.

Similarly, if at some level, v and u are equivalent and so are w and x, then, if v and w are
equivalent at this same level, then u and x are also equivalent at this level. It is easy to see
that a simple composition of automorphisms, as in the previous cases, yields this result. Thus,
during the computation of semiorbit partitions, the basic operation performed on the semiorbit
partitions is the merging of semiorbits. When two vertices u and v are found equivalent, their
semiorbits are merged.

Definition 6.5 Let G = (V,R) be a graph, an let O = {O1, ..., On} be a partition of V . Then,
merge(O, Oi, Oj) = O \ {Oi, Oj} ∪ {Oi ∪Oj}.
Besides, we will use Orb(v,O) to denote the semiorbit to which vertex v belongs in a semiorbit
partition O. Let us now extend the concept of sequence of partitions to include the semiorbit
partition.

Definition 6.6 Let G = (V,R) be a graph. An extended sequence of partitions E for graph G is
a tuple (Q,O), where Q is a sequence of partitions, denoted as SeqPart(E), and O is a semiorbit
partition of G, denoted as Orbits(E).

We observe now that when all the vertices in a pivot set used at a backtracking point (Rl =
BACKTRACK) are proved to be equivalent, Rl can be set to VERTEX, eliminating a back-
tracking point in the search for a sequence of partitions compatible with the target. This is a
consequence of the fact that automorphisms are preserved under isomorphisms, which is stated
in the following lemma:

Lemma 6.4 If the vertices of a pivot set in a sequence of partitions QG for graph G are equiva-
lent, then in a compatible sequence of partitions QH for graph H, the vertices in the corresponding
pivot set must also be equivalent.

Making use of this lemma in our algorithm, probably not all the backtracking points will be
eliminated, but a significant improvement may be achieved for graphs with a symmetric struc-
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ture. This search for equivalence among the vertices in the pivot cells will be performed just
after the generation of the sequences of partitions, and before the search for the compatible
sequence of partitions.

Equivalence among vertices in a graph may be used during the search for the compatible sequence
of partitions for the graph, thus reducing the number of vertices to try at a backtracking point,
what will also help pruning the search space. However, note that the only information we
consider about automorphisms is our semiorbit partition. Hence, with an extended sequence of
partitions, we know that two vertices are equivalent, but we do not know which vertices are fixed
by an automorphism that permutes them. Nevertheless, we can state the following observation:

Observation 6.1 For each two vertices u and v that belong to the same semiorbit in a semiorbit
partition, there is at least one automorphism that fixes all the vertices that belong to singleton
semiorbits and permutes u and v.

Proof: In fact, if there are vertices in singleton semiorbits, that is because all known automor-
phisms fix them.

Storing the full automorphism group of a graph, or at least all the automorphisms discovered,
would be much more powerful. Some ways to represent an automorphism group feasible for
our purpose are exposed in [40, Chapter 6]. However, more space or more computing would be
needed than in the proposed algorithm. Hence, we have chosen to manage vertex equivalence
the easy way. A future improvement to our algorithm might be to add a more powerful way to
manage automorphisms. If our algorithm is modified to compute the automorphism group of a
graph, this would be a compulsory feature.

In the following sections, for simplicity, we will use the terms orbit and orbit partition to refer
to semiorbits and semiorbit partitions.

6.2 Algorithm conauto-v0

We present now an algorithm, called conauto-v0, which is based on the previous algorithm
sinauto. This new algorithm makes use of discovered automorphisms to eliminate backtracking
points, and to discard vertices in advance at the remaining backtracking points as described.
Since the information used about automorphisms is rather limited, we do not expect it to have a
huge impact as it does in nauty, where more sophisticated automorphism management is used.

6.2.1 Main Algorithm

Algorithm 5 describes the behavior of conauto-v0. Like the previous algorithm (sinauto), it
receives two graphs G and H as parameters and returns TRUE if both graphs are isomorphic,
and FALSE if they are not.

Algorithm 5 makes initial tests to discard trivial cases, just like Algorithm 1. Next it generates
the sequences of partitions QG and QH for graphs G and H respectively, using Algorithm 2
(the same used in Algorithm 1). Then, using a new Algorithm 6, it looks for automorphisms,
and obtains two extended sequences of partitions EG and EH for graphs G and H respectively,
which include the discovered orbits for each graph. Finally, it takes the sequence of partitions
with least remaining backtracking points as the target, and the orbits of the other graph, and
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Algorithm 5 Test whether G and H are isomorphic (conauto-v0).

AreIsomorphic2 (G,H) : boolean
1 - - let G = (VG, RG) and H = (VH , RH)
2 if (|VG| 6= |VH |) ∨ (|RG| 6= |RH |) then
3 return FALSE
4 else

5 DG ← DegreePartition(G)
6 DH ← DegreePartition(H)
7 if DG and DH are not compatible under G and H respectively then

8 return FALSE
9 else

10 QG ← GenerateSequenceOfPartitions(G,DG)
11 QH ← GenerateSequenceOfPartitions(H,DH)
12 EG ← FindAutomorphisms(G,QG)
13 EH ← FindAutomorphisms(H,QH)
14 if BacktrackAmount(SeqPart(EG)) ≤ BacktrackAmount(SeqPart(EH)) then
15 return Match2 (0, G,H,SeqPart(EG),DH ,Orbits(EH))
16 else

17 return Match2 (0, H,G,SeqPart(EH),DG,Orbits(EG))
18 end if

19 end if

20 end if

calls Algorithm 10, which is a new version of the Match algorithm of Algorithm 1, to look for
a sequence of partitions compatible with the target. These orbits will help Algorithm 10 prune
the search space, making it possible to discard some vertices at a backtracking point without
the need of testing them.

6.2.2 Search for Automorphisms

The search for automorphisms is performed by Algorithm 6. It starts from the last partition in
the sequence, and traverses the sequence up to the first. This way, Lemma 6.3 will be applicable,
so the automorphisms already found may be used when processing previous partitions in the
sequence. At each level, the algorithm tries to use Lemmas 6.1 and 6.2 to find equivalences
among vertices.

Lemma 6.1 is applicable at each level l in the sequence of partitions provided that there are cells
with no remaining links. This is done by Algorithm 7. However, Lemma 6.2 is only applicable
when Rl = BACKTRACK. In this case, the algorithm proceeds as follows:

First, the orbits of all the vertices in the pivot cell, except vertex p used in the original sequence
of partitions, are marked valid. Observe that p does not need to be stored since it can be
identified as the only vertex with links in S l that is not in S l+1.

Then, for each vertex in the pivot cell that belongs to an orbit different from that of the
original pivot vertex, and which is valid, an alternative sequence of partitions is generated using
Algorithm 9. If it is compatible with the original one, Lemma 6.2 is applied using Algorithm 8
to establish vertex equivalences. As a consequence of this, the orbit of the alternative pivot
vertex is merged with that of the original one. Hence, the vertices that were equivalent to the
alternative pivot vertex will belong to the orbit of the original one, and they will be ignored in
subsequent walks through the loop. If the alternative sequence of partitions is not compatible
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Algorithm 6 Look for automorphisms.

FindAutomorphisms(G,Q) : extended sequence of partitions
1 - - let G = (V,R)
2 - - let Q = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
3 - - let Sl = (Sl

1, ...S
l
rl
), V l =

⋃rl
j=1 S

l
j , for all l ∈ {0, ..., t}

4 O← {{vi} : vi ∈ V }
5 O← ProcessCellsWithNoLinks(G,Q,O)
6 l← t− 1
7 while l ≥ 0 do

8 if Rl = BACKTRACK then

9 - - let p be the pivot vertex used to generate partition Sl+1

10 for each v ∈ (Sl
P l \ {p}) do

11 Valid(Orb(v,O))← TRUE
12 end for

13 success ← TRUE
14 for each v ∈ (Sl

P l \ {p}) do
15 if Orb(p,O) 6= Orb(v,O) ∧ Valid(Orb(v,O)) then
16 Q′ ← GenerateAlternativeSequenceOfPartitions(l, v,Sl, G,Q)
17 if Q′ is a sequence of partitions compatible with Q then

18 O← ProcessCompatibleSequencesOfPartitions(G,Q,Q′,O)
19 else

20 Valid(Orb(v,O))← FALSE
21 success ← FALSE
22 end if

23 end if

24 end for

25 if success then

26 Rl ← VERTEX
27 end if

28 end if

29 l← l − 1
30 end while

31 return (Q,O)

with the original one, the orbit of the alternative pivot vertex is marked non-valid, and all the
vertices in its orbit will be ignored in subsequent walks through the loop.

When, at a backtracking point, all the vertices in the pivot cell are found to be equivalent, Rl

is changed form BACKTRACK to VERTEX. Recall that, from Lemma 6.4, this equivalence
must hold for the other graph, so only one vertex in the corresponding pivot cell will need to be
tested during the search for an equivalent sequence of partitions.

The generation of the alternative sequences of partitions is done using Algorithm 9. In this
search, no backtracking is performed. This imposes some restrictions on the algorithm. The
new sequence of partitions Q′ is the old one up to level l, where a different pivot vertex (from
the one used in the original sequence Q) is used for the refinement. To compute the rest of the
sequence, the algorithm first generates a new partition T l+1 as an alternative to S l+1, using
the pivot vertex v received as a parameter. If these partitions are compatible, then the process
can go on. Otherwise, it is not possible to generate a compatible sequence of partitions for that
vertex.

If partition T l+1 is compatible with S l+1, then new partitions in the sequence Q′ are generated
using the same kind of refinement Rk with the corresponding pivot cell T k

P k . If at some step, a
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Algorithm 7 Apply Lemma 6.1.

ProcessCellsWithNoLinks(G,Q,O) : orbit partition
1 - - let G = (V,R)
2 - - let Q = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
3 - - let Sl = (Sl

1, ...S
l
rl
), V l =

⋃rl
j=1 S

l
j , for all l ∈ {0, ..., t}

4 for each l ∈ {0, ..., t} do
5 for each Sl

x ∈ Sl : ¬HasLinks(Sl
x, V

l, G) do
6 for each u, v ∈ Sl

x, u 6= v do

7 O← merge(O,Orb(u,O),Orb(v,O))
8 end for

9 end for

10 end for

11 return O

Algorithm 8 Apply Lemma 6.2.

ProcessCompatibleSequencesOfPartitions(G,Q,Q′,O) : orbit partition
1 - - let G = (V,R)
2 - - let ≤Q be the order induced by Q

3 - - let ≤Q′ be the order induced by Q′

4 - - let ωQ(i) denote the ith vertex with respect to ≤Q

5 - - let ωQ′(i) denote the ith vertex with respect to ≤Q′

6 for each i ∈ {1, ..., |V |} do
7 O← merge(O,Orb(ωQ(i),O),Orb(ωQ′(i),O))
8 end for

9 return O

partition T k is found that is not only compatible with Sk, but identical, then it is not necessary
to go further, since the rest of both sequences must be the same. If an incompatibility is found,
then it is also unnecessary to go on, since the sequences of partitions can not be compatible.

In case a vertex refinement (Rk = VERTEX) is performed with a pivot cell with more than
one vertex (|Sk

P k | > 1), that must be the case that, previously, all the vertices in that pivot cell
of the original partition were found to be equivalent. Lemma 6.4 can also be applied in this
case. Hence, a vertex refinement will be performed and the algorithm will proceed as in the case
where |Sk

P k | = 1.

If the algorithm finds Rk = BACKTRACK at some level, it might be possible to find a sequence
of partitions compatible with the original one, for some vertex in the pivot set. However, if
there are more than one such levels, then backtracking would be needed. Since we do not want
backtracking in this algorithm, if such a level is found, an incompatible sequence of partitions
will be returned, and no automorphism will be found. This is not an optimal solution, but we
hope it does not imply an important loss of performance. Nevertheless, since we are not trying
to compute the automorphism group of the graphs, missing some automorphisms should not be
too problematic.

6.2.3 Search for a Sequence of Partitions Compatible with the Target

Algorithm Match2 is a recursive algorithm that receives a level l to process in the sequence of
partitions, the graphs G and H to test, the sequence of partitions QG for graph G, the partition
at level l for graph H, T , and the orbit partition OH previously obtained for graph H. It returns
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Algorithm 9 Try to generate a compatible sequence of partitions without backtracking.

GenerateAlternativeSequenceOfPartitions(l, v,Sl, G,Q) : sequence of partitions
1 - - let G = (V,R)
2 - - let Q = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
3 - - let Q′ = (T,R,P), let T = (T 0, ..., T t)
4 - - for all i ∈ {0, ..., t}, let Si = (Si

1, ..., S
i
rl
), V i =

⋃rl
j=1 S

i
j

5 - - for all i ∈ {0, ..., l}, let T i = Si
6 - - for all i ∈ {l + 1, ..., t}, if T i is defined, let T i = (T i

1, ..., T
i
ri
),W i =

⋃ri
j=1 T

i
j

7 T l+1 ← VertexRefinement(Sl, v,GV l)
8 k ← l + 1
9 while k < t and Sk and T k are compatible under GV k and GWk respectively do

10 if T k = Sk then

11 for each i ∈ {k + 1, ..., t} do
12 T i ← Si
13 end for

14 k ← t
15 else

16 if Rk = BACKTRACK then

17 T k ← ∅
18 k ← t
19 else

20 if Rk = VERTEX then

21 v ← any vertex in T k
Pk

22 T k+1 ← VertexRefinement(T k, v,GWk)
23 k ← k + 1
24 else (i.e. Rk = SET)
25 T k+1 ← SetRefinement(T k, T k

Pk , GWk)
26 k ← k + 1
27 end if

28 end if

29 end if

30 end while

31 return Q′

TRUE if it is able to find a sequence of partitions for graph H starting with partition T that is
compatible with QG, and FALSE otherwise.

Algorithm 10 is based on Algorithm 4. It starts with a partition T that is compatible with S l.
Then, if the type of refinement used to generate the next partition in the sequence is VERTEX, it
applies a vertex refinement to partition T . Then, if the new partition generated T ′ is compatible
with S l+1, it recursively calls itself to process the next partition in the sequence. In the case of
a set refinement, it works in a similar way, just like Algorithm 4 does.

If Rl = BACKTRACK, it makes use of the discovered vertex equivalences to prune the search
space. It uses the attribute Valid of the orbits of the vertices in the pivot cell TP l to discard
vertices that are equivalent to some other vertex that has already been discarded. Note that all
the vertices in VH \W have been fixed in the previous levels. If all the vertices in VH \W belong
to singleton orbits, from Lemma 6.2 the discovered orbits for graph H may be applied, but we
can not be sure if they are valid when some vertices in non-singleton orbits have been previously
fixed. More sophisticated isomorphism management may help here, but we have discarded for
now that possibility in favor of simplicity. Hence, vertex equivalence will only be applied when
all the previously fixed vertices belong to singleton orbits. It is easy to see that the orbits are
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Algorithm 10 Find a sequence of partitions compatible with the target (conauto-v0).

Match2 (l, G,H,QG, T ,OH) : boolean
1 - - let QG = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
2 - - let Sl = (Sl

1, ...S
l
rl
), V l =

⋃rl
j=1 S

l
j , for all l ∈ {0, ..., t}

3 - - let H = (VH , RH), let T = (T1, ...Trl),W =
⋃rl

j=1 Tj

4 if l = t then
5 success ← ∀x, y ∈ {1, ..., rl},ADeg(St

x, S
t
y, G) = ADeg(Tx, Ty, H)

6 else

7 X ← TP l

8 if Rl = BACKTRACK then

9 orbitsApplicable ← ∀v ∈ VH \W, |Orb(v,OH)| = 1
10 for each v ∈ X do

11 Valid(Orb(v,OH))← TRUE
12 end for

13 repeat

14 v ← any vertex in X
15 X ← X \ {v}
16 if ¬orbitsApplicable ∨ Valid(Orb(v,OH)) then
17 T ′ ← VertexRefinement(T , v,HW )
18 - - let T ′ = (T ′

1, ..., T
′

r),W
′ =

⋃r

j=1 T
′

j

19 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

20 success ← Match2 (l + 1, G,H,QG, T ′,OH)
21 else

22 success ← FALSE
23 end if

24 Valid(Orb(v,OH))← FALSE
25 end if

26 until X = ∅ ∨ success
27 else

28 if Rl = VERTEX then

29 v ← any vertex in X
30 T ′ ← VertexRefinement(T , v,HW )
31 else (i.e. Rl = SET)
32 T ′ ← SetRefinement(T , X,HW )
33 end if

34 - - let T ′ = (T ′

1, ..., T
′

r),W
′ =

⋃r

j=1 T
′

j

35 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

36 success ← Match2 (l + 1, G,H,QG, T ′,OH)
37 else

38 success ← FALSE
39 end if

40 end if

41 end if

42 return success

always applicable at the first level in the sequence of partitions, since at this first level no vertex
has been fixed yet.

To start with, all the orbits of the vertices in the pivot cell are considered valid, since none of
them has been discarded yet. Then, the vertices in the pivot cell are tried until one of them
yields a sequence of partitions compatible with the target (just like it was done in Algorithm 4),
or all of them have been tried unsuccessfully (or discarded). If orbits are applicable, then the
vertices that belong to the orbit of a previously discarded vertex are directly discarded.
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6.3 Example

To illustrate the behavior of algorithm conauto-v0, we will use the sample graphs in Figure 5.1.
These sample graphs will show how the algorithm discovers automorphisms, and how the search
for a sequence of partitions compatible with the target is pruned. We will not reproduce the
generation of the sequences of partitions for graphs G and H, since that was already shown in
Sections 5.2.1 and 5.2.2.

In the following sections we show the search for automorphisms for the sample graphs G and H
which is performed by Algorithm 6, the choice of the target, and the search for a sequence of
partitions compatible with the target, for the other graph, which is performed by Algorithm 10.

6.3.1 Search for Automorphisms in graph G

First, the trivial orbit partition O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}} for graph G is com-
puted. Then, the sequence of partitions obtained for graph G is traversed backwards starting
with partition S5. Since there are no non-singleton cells (with no remaining links), Algorithm 7
yields no orbit merges.

Since R4 = BACKTRACK, the vertices in the pivot cell S4
1 = {1, 4} other than 1 (the pivot

vertex used in the original sequence of partitions) are tested for equivalence. This leaves only
vertex 4 to be tested. Its orbit is marked valid and, since vertices 1 and 4 belong to different
orbits, vertex 4 is used to generate an alternative sequence of partitions. This is done with
Algorithm 9. In this case, only one new partition needs to be generated. A vertex refinement
of partition S4 = ({1, 4}, {5, 7}, {2, 3}) yields the partition T 5 = (T 5

1 , T
5
2 , T

5
3 , T

5
4 , T

5
5 ), where

W 5 = {1, 2, 3, 5, 7}, and:

T 5
1 = {1} with ADeg({1}, {4}, G) = (0, 0, 0)

T 5
2 = {5} with ADeg({5}, {4}, G) = (1, 0, 0)

T 5
3 = {7} with ADeg({7}, {4}, G) = (0, 0, 0)

T 5
4 = {3} with ADeg({3}, {4}, G) = (1, 0, 0)

T 5
5 = {2} with ADeg({2}, {4}, G) = (0, 0, 0)

This partition is compatible with S5. Since T 5 and S5 are the final partitions in their respective
sequences of partitions, it must be tested that mapping vertex 1 to 4, 5 to 7, 7 to 5, 3 to 2, and
2 to 3 is an isomorphism of GV 5 and GW 5 . This is best illustrated in Figure 6.1.

1 5 3 27 324 5 7

Adjacencies in GW 5Adjacencies in GV 5

Figure 6.1: Adjacencies in GV 5 and GW 5 .

It is easy to see that the defined mapping is, in fact, an isomorphism of GV 5 and GW 5 . Fur-
thermore, it leads to an automorphism of G. The alternative sequence of partitions generated
by Algorithm 9 is compatible with the original one, and Algorithm 8 is applied to merge the
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corresponding orbits. Thus, the orbits of vertices 1 and 4 are merged, and the same applies
to the orbits of vertices 5 and 7, and to vertices 2 and 3. This yields a new orbit partition
O = {{0}, {1, 4}, {2, 3}, {5, 7}, {6}}.
Since vertices 1 and 4 are equivalent, then Rl is changed to VERTEX. Next, for l = 4, there
are no cells with no remaining links, so Algorithm 7 yields no result either, and the algorithm
proceeds to level 3. At this level, Rl = VERTEX and there is no cell with no remaining links,
so the algorithm proceeds to level 2. Here again, Rl = SET and there are no cells with no
remaining links, so l is decremented. The same case applies to level 1, so l is again decremented.
Thus we get to level 0, where R0 = BACKTRACK.

First, the orbits {1, 4}, {2, 3}, {5, 7}, and {6} are marked valid. Then, alternative sequences of
partitions are generated for the other vertices in the pivot cell (the only one in the partition).
Let us assume they are tried in lexicographical order. Hence, the candidate vertices will be 1,
2, then vertex 3 will be discarded since it is equivalent to 2 (if 0 and 2 are equivalent, then 0
and 3 are also equivalent from Lemma 6.3, and similarly if 0 and 2 are not equivalent, then 0
and 3 can not be either), vertex 4 is also discarded for the same reason, 5, 6, and 7 will also be
discarded since it is equivalent to 5. Since the graph is regular, the first vertex refinement with
the alternative pivot vertex will always yield a partition that is compatible with the original
one.

Vertex 1 yields a partition T 1 = (T 1
1 , T

1
2 ), where W 1 = {0, 2, 3, 4, 5, 6, 7}, and:

T 1
1 = {0, 2, 7} with ADeg({0, 2, 7}, {1}, G) = (1, 0, 0)

T 1
2 = {3, 4, 5, 6} with ADeg({3, 4, 5, 6}, {1}, G) = (0, 0, 0)

Refining this partition by set, using T 1
1 as the pivot cell, we obtain a new partition T 2 =

(T 2
1 , T

2
2 , T

2
3 , T

2
4 , T

2
5 ), where W 2 = {0, 2, 3, 4, 5, 6, 7}, and:

T 2
1 = {2, 7} with ADeg({2, 7}, {0, 2, 7}, G) = (1, 0, 0)

T 2
2 = {0} with ADeg({0}, {0, 2, 7}, G) = (0, 0, 0)

T 2
3 = {6} with ADeg({6}, {0, 2, 7}, G) = (2, 0, 0)

T 2
4 = {3, 4} with ADeg({3, 4}, {0, 2, 7}, G) = (1, 0, 0)

T 2
5 = {5} with ADeg({5}, {0, 2, 7}, G) = (0, 0, 0)

Clearly, vertex 1 does not generate a sequence of partitions compatible with the original one,
since T 2 is not compatible with S2. Hence, success is set to FALSE and the orbit of vertex 1 is
marked not valid.

Next the algorithm tries vertex 2, since its orbit is valid. After a vertex refinement, a new
partition T 1 = (T 1

1 , T
1
2 ) is obtained, where W 1 = {0, 1, 3, 4, 5, 6, 7}, and:

T 1
1 = {1, 3, 7} with ADeg({1, 3, 7}, {2}, G) = (1, 0, 0)

T 1
2 = {0, 4, 5, 6} with ADeg({0, 4, 5, 6}, {2}, G) = (0, 0, 0)

As expected, this partition is compatible with the original one S1. Hence, a set refinement is
performed, using S1

1 = {1, 3, 7} as the pivot cell. Thus we get a new partition T 2 = (T 2
1 , T

2
2 , T

2
3 ),

where W 2 = {0, 1, 3, 4, 5, 6, 7}, and:

T 2
1 = {1, 7} with ADeg({1, 7}, {1, 3, 7}, G) = (1, 0, 0)

T 2
2 = {3} with ADeg({3}, {1, 3, 7}, G) = (0, 0, 0)
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T 2
3 = {0, 4, 5, 6} with ADeg({0, 4, 5, 6}, {1, 3, 7}, G) = (1, 0, 0)

This partition is not compatible with S2, so vertex 2 does not generate a sequence of partitions
compatible with the original one. Hence, its orbit is marked not valid, and the algorithm goes
on to vertex 3. However, this vertex belongs to the orbit of 2, which has just been discarded, so
vertex 3 is also discarded without being tried. Next is vertex 4, which belongs to the orbit of 1,
so it is also directly discarded. Thus we get to vertex 5.

A vertex refinement of partition S0 using 5 as the pivot vertex yields a new partition T 1 =
(T 1

1 , T
1
2 ), where W 1 = {0, 1, 2, 3, 4, 6, 7}, and:

T 1
1 = {3, 4, 6} with ADeg({3, 4, 6}, {5}, G) = (1, 0, 0)

T 1
2 = {0, 1, 2, 7} with ADeg({0, 1, 2, 7}, {5}, G) = (0, 0, 0)

The subsequent set refinement using T 1
1 = {3, 4, 6} as the pivot cell yields a new partition

T 2 = (T 2
1 , T

2
2 , T

2
3 , T

2
4 , T

2
5 ), where W 2 = {0, 1, 2, 3, 4, 6, 7}, and:

T 2
1 = {3, 4} with ADeg({3, 4}, {3, 4, 6}, G) = (1, 0, 0)

T 2
2 = {6} with ADeg({6}, {3, 4, 6}, G) = (0, 0, 0)

T 2
3 = {0} with ADeg({0}, {3, 4, 6}, G) = (2, 0, 0)

T 2
4 = {2, 7} with ADeg({2, 7}, {3, 4, 6}, G) = (1, 0, 0)

T 2
5 = {1} with ADeg({1}, {3, 4, 6}, G) = (0, 0, 0)

This is not compatible with partition S2 and, hence, vertex 5 can not generate a sequence of
partitions compatible with the original one, so the orbit of vertex 5 is marked not valid, and the
algorithm proceeds to vertex 6.

A vertex refinement using 6 as the pivot vertex yields a partition T 1 = (T 1
1 , T

1
2 ), where W 1 =

{0, 1, 2, 3, 4, 5, 7}, and:

T 1
1 = {0, 5, 7} with ADeg({0, 5, 7}, {6}, G) = (1, 0, 0)

T 1
2 = {1, 2, 3, 4} with ADeg({1, 2, 3, 4}, {6}, G) = (0, 0, 0)

Refining this partition by set, using the pivot cell {0, 5, 7}, yields a new partition T 2 = (T 2
1 , T

2
2 , T

2
3 ),

where W 2 = {0, 1, 2, 3, 4, 5, 7}, and:

T 2
1 = {0, 5, 7} with ADeg({0, 5, 7}, {0, 5, 7}, G) = (0, 0, 0)

T 2
2 = {1, 4} with ADeg({1, 4}, {0, 5, 7}, G) = (2, 0, 0)

T 2
3 = {2, 3} with ADeg({2, 3}, {0, 5, 7}, G) = (1, 0, 0)

Since this partition is compatible with the original one, the algorithm proceeds to the next level.
Since P 2 = 2 and R2 = SET, a set refinement is performed using T 2

2 = {1, 4} as the pivot cell.
Thus, a new partition T 3 = (T 3

1 , T
3
2 , T

3
3 , T

3
4 ) is obtained, where W 3 = {0, 1, 2, 3, 4, 5, 7}, and:

T 3
1 = {0} with ADeg({0}, {1, 4}, G) = (2, 0, 0)

T 3
2 = {5, 7} with ADeg({5, 7}, {1, 4}, G) = (1, 0, 0)

T 3
3 = {1, 4} with ADeg({1, 4}, {1, 4}, G) = (0, 0, 0)

T 3
4 = {2, 3} with ADeg({2, 3}, {1, 4}, G) = (1, 0, 0)

Again, this partition is compatible with the original one, so a new refinement is performed,
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using 0 as the pivot vertex, since P 3 = 1 and R3 = VERTEX. This yields a new partition
T 4 = (T 4

1 , T
4
2 , T

4
3 ), where W 4 = {1, 2, 3, 4, 5, 7}, and:

T 4
1 = {5, 7} with ADeg({5, 7}, {0}, G) = (0, 0, 0)

T 4
2 = {1, 4} with ADeg({1, 4}, {0}, G) = (1, 0, 0)

T 4
3 = {2, 3} with ADeg({2, 3}, {0}, G) = (0, 0, 0)

This partition is compatible with the original S4. At the next step, we find that P 4 = 1, and
R4 = VERTEX, although initially it was BACKTRACK. Recall that it was changed when
looking for automorphisms at this level. Hence, a vertex refinement is performed using any of
the vertices in cell T 4

1 = {5, 7}. Let us choose vertex 5 for this example. Then, we obtain a new
partition T 5 = (T 5

1 , T
5
2 , T

5
3 , T

5
4 , T

5
5 ), where W 4 = {1, 2, 3, 4, 7}, and:

T 5
1 = {7} with ADeg({7}, {5}, G) = (0, 0, 0)

T 5
2 = {4} with ADeg({4}, {5}, G) = (1, 0, 0)

T 5
3 = {1} with ADeg({1}, {5}, G) = (0, 0, 0)

T 5
4 = {3} with ADeg({3}, {5}, G) = (1, 0, 0)

T 5
5 = {2} with ADeg({2}, {5}, G) = (0, 0, 0)

This partition is compatible with S5. Since T 5 and S5 are the final partitions in their respective
sequences of partitions, it must be tested that mapping vertex 7 to 4, 4 to 7, 1 to 5, 3 to 2, and
2 to 3 is an isomorphism of GV 5 and GW 5 . This is best illustrated in Figure 6.2.

7 47 324 5 1

Adjacencies in GW 5Adjacencies in GV 5

3 2

Figure 6.2: Adjacencies in GV 5 and GW 5 .

It is easy to see that the mapping defined above is an isomorphism of GV 5 and GW 5 . Further-
more, it leads to an automorphism of G. The alternative sequence of partitions generated by
Algorithm 9 is compatible with the original one, and induces the following order on the vertices
of graph G: (6, 0, 5, 7, 4, 1, 3, 2). The original sequence of partitions induces the following order:
(0, 6, 1, 4, 7, 5, 2, 3). Algorithm 8 is applied to merge the corresponding orbits. This yields a new
orbit partition O = {{0, 6}, {1, 4, 5, 7}, {2, 3}}.

Next, vertex 7 is considered, but discarded since it is in the orbit of 1, which was previously
discarded. Finally, since not all the vertices in the only cell in S0 are equivalent, R0 remains
with its original value BACKTRACK. The search for automorphisms in graph G has eliminated
a backtracking point, and has classified the vertices in three orbits. In fact, that is the true orbit
partition of this graph.

6.3.2 Search for Automorphisms in Graph H

As in the case of graphG, first the trivial orbit partition O = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}
is computed. Since the last partition in the sequence has no cells with no remaining links and
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more than one vertex, Algorithm 7 does not merge any orbits. Then the original sequence of
partitions is traversed backwards looking for automorphisms.

For l = 4, R4 = VERTEX, so no alternative sequences of partitions will be generated. Likewise,
there are no cells with no remaining links, so Algorithm 7 does not merge any orbits, either.

Since R3 = BACKTRACK and P 3 = 1, vertex 2 is used to generate an alternative sequence
of partitions (recall that vertex 1 was the pivot vertex in the original sequence of partitions).
Algorithm 9 generates a new partition T 4 = (T 4

1 , T
4
2 , T

4
3 , T

4
4 ), where W 4 = {1, 3, 4, 5, 6}, and:

T 4
1 = {1} with ADeg({1}, {2}, H) = (1, 0, 0)

T 4
2 = {5, 6} with ADeg({5, 6}, {2}, H) = (0, 0, 0)

T 4
3 = {3} with ADeg({3}, {2}, H) = (1, 0, 0)

T 4
4 = {4} with ADeg({4}, {2}, H) = (0, 0, 0)

This partition is compatible with S4, and R4 = VERTEX and P 4 = 4, so a vertex refinement
is performed with pivot vertex 4. This yields a new partition T 5 = (T 5

1 , T
5
2 , T

5
3 , T

5
4 ), where

W 5 = {1, 3, 5, 6}, and:

T 5
1 = {1} with ADeg({1}, {4}, H) = (1, 0, 0)

T 5
2 = {5} with ADeg({5}, {4}, H) = (1, 0, 0)

T 5
3 = {6} with ADeg({5}, {4}, H) = (0, 0, 0)

T 5
4 = {3} with ADeg({3}, {4}, H) = (1, 0, 0)

This partition is compatible with S5 and, as it can be easily seen in Figure 6.3, matching the ver-
tices in the corresponding cells we obtain an isomorphism of HV 5 and HW 5 . Furthermore, it ex-
tends to an automorphism of H, using the orders induced by both sequences of partitions, which
are (0, 7, 1, 3, 2, 6, 5, 4) and (0, 7, 2, 4, 1, 5, 6, 3). Hence, the orbits of 1 and 2, of 3 and 4, 2 and 1,
5 and 6, and 4 and 3 are merged, obtaining a new orbit partition {{0}, {1, 2}, {3, 4}, {5, 6}, {7}}.

562 5 4 1 6 3

Adjacencies in HV 5 Adjacencies in HW 5

Figure 6.3: Adjacencies in HV 5 and HW 5 .

Next, R3 is changed from BACKTRACK to VERTEX, since all the vertices in the original pivot
cell {1, 2} are equivalent. Finally, Algorithm 7 is called, but since there are no cells in S3 with
more than one vertex and no remaining links, this has no effect on the orbit partition of the
graph.

R2 = VERTEX. Hence, the only process at this level is performed by Algorithm 7, but it does
not merge any orbits, since there are no cells without links. For l = 1, the situation is analogous
to that of l = 2, with the exception that R1 = SET, while R2 = VERTEX. Thus we come to
level l = 0.

This is a backtracking point, so there will be a search for alternative sequences of partitions.
Since there are 5 orbits in this moment, at most 4 vertices will be tested. Note that 7 tests
would be necessary if we had no knowledge of orbits. Since the graph is regular, the first vertex
refinement with the alternative pivot vertex will always yield a partition that is compatible with
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the original one. In this example, the vertices will be tested in lexicographical order. Since
vertex 0 was used in the original sequence of partitions, we will start with vertex 1.

After a vertex refinement using vertex 1 as the pivot, we obtain a partition T 1 = (T 1
1 , T

1
2 ), where

W 1 = {0, 2, 3, 4, 5, 6, 7}, and:

T 1
1 = {0, 2, 4} with ADeg({0, 2, 4}, {1}, H) = (1, 0, 0)

T 1
2 = {3, 5, 6, 7} with ADeg({3, 5, 6, 7}, {1}, H) = (0, 0, 0)

Then, refining this partition by set using T 1
1 as the pivot cell, we get a new partition T 2 =

(T 2
1 , T

2
2 , T

2
3 , T

2
4 , T

2
5 ), where W 2 = {0, 2, 3, 4, 5, 6, 7}, and:

T 2
1 = {0, 2} with ADeg({0, 2}, {0, 2, 4}, H) = (1, 0, 0)

T 2
2 = {4} with ADeg({4}, {0, 2, 4}, H) = (0, 0, 0)

T 2
3 = {3} with ADeg({3}, {0, 2, 4}, H) = (2, 0, 0)

T 2
4 = {5, 7} with ADeg({5, 7}, {0, 2, 4}, H) = (1, 0, 0)

T 2
5 = {6} with ADeg({6}, {0, 2, 4}, H) = (0, 0, 0)

This partition is not compatible with S2, so, following this path, it is not possible to generate a
sequence of partitions compatible with the original one. Hence the orbit of vertex 1 is marked
not valid. Thus, we proceed to vertex 2. However, vertex 2 is in the orbit of vertex 1, which
has just been discarded. Hence, vertex 2 is not considered, and the algorithm goes on to
vertex 3. After the corresponding vertex refinement we get a partition T 1 = (T 1

1 , T
1
2 ), where

W 1 = {0, 1, 2, 4, 5, 6, 7}, and:

T 1
1 = {2, 4, 6} with ADeg({2, 4, 6}, {3}, H) = (1, 0, 0)

T 1
2 = {0, 1, 5, 7} with ADeg({0, 1, 5, 7}, {3}, H) = (0, 0, 0)

Then, refining by set this partition using cell {2, 4, 6} as the pivot cell, a new partition T 2 =
(T 2

1 , T
2
2 , T

2
3 ) is obtained, where W 2 = {0, 1, 2, 4, 5, 6, 7}, and:

T 2
1 = {2, 4, 6} with ADeg({2, 4, 6}, {2, 4, 6}, H) = (0, 0, 0)

T 2
2 = {1, 5} with ADeg({1, 5}, {2, 4, 6}, H) = (2, 0, 0)

T 2
3 = {0, 7} with ADeg({0, 7}, {2, 4, 6}, H) = (1, 0, 0)

Unfortunately this partition is not compatible with S2, so this alternative sequence of partitions
will not be compatible with the original one. Hence, the orbit of vertex 3 is also marked as not
valid, and the algorithm goes on to vertex 4. However, since this vertex is in the orbit of 3, it is
directly discarded, and vertex 5 will be the next considered. A vertex refinement using vertex 5
as the pivot yields a new partition T 1 = (T 1

1 , T
1
2 ), where W 1 = {0, 1, 2, 3, 4, 6, 7}, and:

T 1
1 = {4, 6, 7} with ADeg({4, 6, 7}, {5}, H) = (1, 0, 0)

T 1
2 = {0, 1, 2, 3} with ADeg({0, 1, 2, 3}, {5}, H) = (0, 0, 0)

Then a set refinement is performed using cell {4, 6, 7} as the pivot set, thus obtaining a new
partition T 2 = (T 2

1 , T
2
2 , T

2
3 , T

2
4 , T

2
5 ), where W 2 = {0, 1, 2, 3, 4, 6, 7}, and:

T 2
1 = {6, 7} with ADeg({6, 7}, {4, 6, 7}, H) = (1, 0, 0)

T 2
2 = {4} with ADeg({4}, {4, 6, 7}, H) = (0, 0, 0)
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T 2
3 = {3} with ADeg({3}, {4, 6, 7}, H) = (2, 0, 0)

T 2
4 = {0, 1} with ADeg({0, 1}, {4, 6, 7}, H) = (1, 0, 0)

T 2
5 = {2} with ADeg({2}, {4, 6, 7}, H) = (0, 0, 0)

This partition is not compatible with S2, so this vertex does not generate a sequence of partitions
compatible with the original one. Hence its orbit is marked not valid, and the algorithm switches
to vertex 6. However, since vertex 6 belongs to the orbit of 5, and vertex 5 has been discarded
already, vertex 6 is directly discarded, proceeding to vertex 7.

With vertex 7 as the pivot, the algorithm performs a vertex refinement that yields a new partition
T 1 = (T 1

1 , T
1
2 ), where W 1 = {0, 1, 2, 3, 4, 5, 6}, and:

T 1
1 = {0, 5, 6} with ADeg({0, 5, 6}, {7}, H) = (1, 0, 0)

T 1
2 = {1, 2, 3, 4} with ADeg({1, 2, 3, 4}, {7}, H) = (0, 0, 0)

Then it is refined by set using cell {0, 5, 6} as the pivot set. This generates a new partition
T 2 = (T 2

1 , T
2
2 , T

2
3 ), where W 2 = {0, 1, 2, 3, 4, 5, 6}, and:

T 2
1 = {5, 6} with ADeg({5, 6}, {0, 5, 6}, H) = (1, 0, 0)

T 2
2 = {0} with ADeg({0}, {0, 5, 6}, H) = (0, 0, 0)

T 2
3 = {1, 2, 3, 4} with ADeg({1, 2, 3, 4}, {0, 5, 6}, H) = (1, 0, 0)

Since this partition is compatible with S2, and R2 = VERTEX and P 2 = 2, a vertex refinement
is performed using vertex 0 as the pivot. Thus we get a partition T 3 = (T 3

1 , T
3
2 , T

3
3 ), where

W 2 = {1, 2, 3, 4, 5, 6}, and:

T 3
1 = {5, 6} with ADeg({5, 6}, {0}, H) = (0, 0, 0)

T 3
2 = {1, 2} with ADeg({1, 2}, {0}, H) = (1, 0, 0)

T 3
3 = {3, 4} with ADeg({3, 4}, {0}, H) = (0, 0, 0)

This partition is compatible with S3. Although initially R3 = BACKTRACK, it was changed
to VERTEX before, during this search for automorphisms. Hence, a vertex refinement with any
vertex in T 3

1 (recall that P 3 = 1) is performed. For this example, let us assume it is vertex 5.
This yields a new partition T 4 = (T 4

1 , T
4
2 , T

4
3 , T

4
4 ), where W 4 = {1, 2, 3, 4, 6}, and:

T 4
1 = {6} with ADeg({6}, {5}, H) = (1, 0, 0)

T 4
2 = {1, 2} with ADeg({1, 2}, {5}, H) = (0, 0, 0)

T 4
3 = {4} with ADeg({4}, {5}, H) = (1, 0, 0)

T 4
4 = {3} with ADeg({3}, {5}, H) = (0, 0, 0)

Again, the partition obtained is compatible with the original one. Since R4 = VERTEX and
P 4 = 4, a vertex refinement is performed using vertex 3 as the pivot. This generates a new
partition T 5 = (T 5

1 , T
5
2 , T

5
3 , T

5
4 ), where W 5 = {1, 2, 4, 6}, and:

T 5
1 = {6} with ADeg({6}, {3}, H) = (1, 0, 0)

T 5
2 = {2} with ADeg({2}, {3}, H) = (1, 0, 0)

T 5
3 = {1} with ADeg({1}, {3}, H) = (0, 0, 0)

T 5
4 = {4} with ADeg({4}, {3}, H) = (1, 0, 0)

This last partition is compatible with the original one, and mapping vertex 6 to vertex 2, vertex
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2 to vertex 6, vertex 1 to vertex 5, and vertex 4 to vertex 4, we get an isomorphism of HW 5 and
HV 5 , as it can be easily seen in Figure 6.4.

262 5 4 6 1 4

Adjacencies in HV 5 Adjacencies in HW 5

Figure 6.4: Adjacencies in HV 5 and HW 5 .

A sequence of partitions compatible with the original one has been found, and the orbits of the
corresponding vertices in the orders induced by both sequences of partitions must be merged.
The order induced by the original sequence of partitions was (0, 7, 1, 3, 2, 6, 5, 4), and the order
induced by the alternative sequence of partitions is (7, 0, 5, 3, 6, 2, 1, 4). Hence, the orbits of 0
and 7 are merged, and also the orbits of 1 and 5. The other merges are redundant, though
Algorithm 8 performs all of them. Thus we get a new orbit partition {{0, 7}, {1, 2, 5, 6}, {3, 4}}.
Since not all the vertices in the pivot cell are equivalent, P 0 remains with its initial value
BACKTRACK. Besides, Algorithm 7 is called, but it has no effect, since there are no cells
with more than one vertex and without links. Nevertheless, the search for automorphisms has
eliminated one backtracking point, and has classified the vertices in the graph in three orbits.
This will certainly reduce the search space when looking for a sequence of partitions compatible
with the chosen target.

6.3.3 Match Graphs G and H

Once both graphs have been searched for automorphisms, Algorithm 5 chooses one of them as
the target (in this case G), and calls Algorithm 10 trying to find a sequence of partitions for
graph H that is compatible with the one for graph G. If it is possible to find one such sequence
of partitions, it returns TRUE, whereas if it is not possible to find it, it returns FALSE.

Algorithm Match2 is called with parameters 0 for the starting level, G for the graph whose
sequence of partitions is SeqPart(Q′

G), and H for the graph whose initial partition is DH =
({0, 1, 2, 3, 4, 5, 6, 7}) and whose known orbits are Orbits(Q′

H) = {{0, 7}, {1, 2, 5, 6}, {3, 4}}.
The sequence of partitions for graph G was generated in Section 5.2.1. Then it was reviewed
in Section 6.3.1, where the last backtracking point (for l = 4) was eliminated (turned into
VERTEX). Recall also that t = 5 (the length of the sequence of partitions for graph G). Let us
start executing Algorithm 10 with this data.

Since l = 0 6= 5 = t, and R0 = BACKTRACK, the vertices in DH will be tried in the search for
a sequence of partitions compatible with QG. First it is tested whether the orbits are applicable
at this level. Since it is the first level and no vertex has been fixed yet, they are applicable.
Then, the three orbits in OH are marked valid, and the search starts. Although the algorithm
does not impose any order on the vertices, we will assume a lexicographical order.

First, vertex 0 is chosen. Since orbits are applicable and the orbit of 0 is valid, a new partition
T ′ = (T ′

1, T
′
2) is generated refining the initial partition T = DH by vertex using 0 as the pivot

vertex, where W ′ = {1, 2, 3, 4, 5, 6, 7}, and:

T ′
1 = {1, 2, 7} with ADeg({1, 2, 7}, {0}, H) = (1, 0, 0)

T ′
2 = {3, 4, 5, 6} with ADeg({3, 4, 5, 6}, {0}, H) = (0, 0, 0)
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This new partition is compatible with the target partition S1 (recall that this will allways be
the case, since both graphs are regular of degree three, and have the same number of vertices),
so a recursive call is made to process the next partition in the sequence.

Since R1 = SET, a set refinement is performed using cell {1, 2, 7} as the pivot set (recall that
P 1 = 1). This yields a partition T ′ = (T ′

1, T
′
2, T

′
3), where W ′ = {1, 2, 3, 4, 5, 6, 7}, and:

T ′
1 = {1, 2} with ADeg({1, 2}, {1, 2, 7}, H) = (1, 0, 0)

T ′
2 = {7} with ADeg({7}, {1, 2, 7}, H) = (0, 0, 0)

T ′
3 = {3, 4, 5, 6} with ADeg({3, 4, 5, 6}, {1, 2, 7}, H) = (1, 0, 0)

This partition is not compatible with S1. Hence, the algorithm returns FALSE, backtracking to
the previous invocation. Next, the orbit of vertex 0 is marked as not valid and, lexicographically,
vertex 1 is considered. Since it belongs to a valid orbit, a vertex refinement is performed using
it as the pivot vertex. Thus we get a partition T ′ = (T ′

1, T
′
2), where W

′ = {0, 2, 3, 4, 5, 6, 7}, and:

T ′
1 = {0, 2, 4} with ADeg({0, 2, 4}, {1}, H) = (1, 0, 0)

T ′
2 = {3, 5, 6, 7} with ADeg({3, 5, 6, 7}, {1}, H) = (0, 0, 0)

This partition is compatible with the target. Hence a recursive call is made to process the next
partition. Since R1 = SET and P 1 = 1, the corresponding set refinement is performed, yielding
a new partition T ′ = (T ′

1, T
′
2, T

′
3, T

′
4, T

′
5), where W ′ = {0, 2, 3, 4, 5, 6, 7}, and:

T ′
1 = {0, 2} with ADeg({0, 2}, {0, 2, 4}, H) = (1, 0, 0)

T ′
2 = {4} with ADeg({4}, {0, 2, 4}, H) = (0, 0, 0)

T ′
3 = {3} with ADeg({3}, {0, 2, 4}, H) = (2, 0, 0)

T ′
4 = {5, 7} with ADeg({5, 7}, {0, 2, 4}, H) = (1, 0, 0)

T ′
5 = {6} with ADeg({6}, {0, 2, 4}, H) = (0, 0, 0)

Since this partition is not compatible with S1, the algorithm returns FALSE, backtracking to
the previous invocation. Then the orbit of 1 is marked not valid. The next vertex to consider
would be 2, but since it belongs to the orbit of 1, which has just been marked not valid, it is
discarded, and the algorithm proceeds to vertex 3. This is the first point where the behavior of
Algorithm 10 yields a difference with Algorithm 4. The vertex refinement with pivot vertex 3
generates a partition T ′ = (T ′

1, T
′
2) is obtained, where W ′ = {0, 1, 2, 4, 5, 6, 7}, and:

T ′
1 = {2, 4, 6} with ADeg({2, 4, 6}, {3}, H) = (1, 0, 0)

T ′
2 = {0, 1, 5, 7} with ADeg({0, 1, 5, 7}, {3}, H) = (0, 0, 0)

Since this partition is compatible with the target, a recursive call is made to process the next
partition in the sequence. Now, a set refinement will be performed with pivot set {2, 4, 6}. Thus
we get a new partition T ′ = (T ′

1, T
′
2, T

′
3), where W ′ = {0, 1, 2, 4, 5, 6, 7}, and:

T ′
1 = {2, 4, 6} with ADeg({2, 4, 6}, {2, 4, 6}, H) = (0, 0, 0)

T ′
2 = {1, 5} with ADeg({1, 5}, {2, 4, 6}, H) = (2, 0, 0)

T ′
3 = {0, 7} with ADeg({0, 7}, {2, 4, 6}, H) = (1, 0, 0)

This partition is finally compatible with the target and a recursive call is made to proceed to the
next partition in the sequence. Here, since P 2 = 2 and R2 = SET, pivot cell {1, 5} is used for a
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set refinement, what yields a new partition T ′ = (T ′
1, T

′
2, T

′
3, T

′
4), where W ′ = {0, 1, 2, 4, 5, 6, 7},

and:

T ′
1 = {4} with ADeg({4}, {1, 5}, H) = (2, 0, 0)

T ′
2 = {2, 6} with ADeg({2, 6}, {1, 5}, H) = (1, 0, 0)

T ′
3 = {1, 5} with ADeg({1, 5}, {1, 5}, H) = (0, 0, 0)

T ′
4 = {0, 7} with ADeg({0, 7}, {1, 5}, H) = (1, 0, 0)

Again, we get a compatible partition, and recursively proceed to the next partition. Here,
P 3 = 1 and R3 = VERTEX. Hence, using vertex 4, a vertex refinement is performed, and a
new partition T ′ = (T ′

1, T
′
2, T

′
3) is obtained, where W ′ = {0, 1, 2, 5, 6, 7}, and:

T ′
1 = {2, 6} with ADeg({2, 6}, {4}, H) = (0, 0, 0)

T ′
2 = {1, 5} with ADeg({1, 5}, {4}, H) = (1, 0, 0)

T ′
3 = {0, 7} with ADeg({0, 7}, {4}, H) = (0, 0, 0)

This partition is also compatible with the target. Hence, a recursive call is made to process the
next partition. Recall that R4 was changed from BACKTRACK to VERTEX during the search
for automorphisms. Then, a vertex refinement is performed, using any vertex in T1. Let us
lexicographically choose vertex 2 as the pivot. Thus we get a partition T ′ = (T ′

1, T
′
2, T

′
3, T

′
4, T

′
5),

where W ′ = {0, 1, 5, 6, 7}, and:

T ′
1 = {6} with ADeg({6}, {2}, H) = (0, 0, 0)

T ′
2 = {1} with ADeg({1}, {2}, H) = (1, 0, 0)

T ′
2 = {5} with ADeg({5}, {2}, H) = (0, 0, 0)

T ′
3 = {0} with ADeg({0}, {2}, H) = (1, 0, 0)

T ′
3 = {7} with ADeg({7}, {2}, H) = (0, 0, 0)

This partition is compatible with S5. Since it is the last partition in the sequence, the adjacencies
among the vertices in the different cells must be compared for both partitions. This partition is
the same obtained by Algorithm 4, and the correspondence of vertices with the original partition
was shown in Figure 5.2. The isomorphism found by both algorithms is the same. The difference
achieved comes from the fact that vertex 3 has been discarded by Algorithm 10 without the need
to generate its corresponding sequence of partitions.

6.4 Proof of correctness

In this section we will show that algorithm conauto-v0 correctly determines if two graphs are
isomorphic or not. This algorithm may have eliminated some backtracking points that were
present in algorithm sinauto. However, we will show that the certainty of finding a sequence
of partitions compatible with the target, if it exists, still holds after this elimination. Besides,
we will prove that discarding vertices due to vertex equivalence does not reduce the certainty of
finding an isomorphism, if it exists.

Theorem 6.1 Two graphs G and H are isomorphic if and only if AreIsomorphic2 (G,H) re-
turns TRUE.

Proof: First, Algorithm AreIsomorphic2 tests some simple necessary conditions for isomor-
phism: both graphs must have the same number of vertices and the same number of arcs, and
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their degree partitions must be compatible; otherwise, the can not be isomorphic.

Then, a sequence of partitions is generated for each graph, and these sequences of partitions are
searched for automorphisms. This has two effects: some backtracking points may be changed
to simple VERTEX refinements, and equivalences among vertices are stored for use during the
search for a sequence of partitions compatible with the target.

If a backtracking point is eliminated at level l, that is because all the vertices in the pivot cell
are considered equivalent. This equivalence may have been established by three different means:

1. It may have been explicitly found by obtaining equivalent sequences of partitions, in which
case, from Lemma 6.2, this equivalence holds.

2. It may have been found at some other level l′ such that l′ > l. In this case, from Lemma 6.3,
it also holds at level l.

3. It may have been inferred applying Remark 6.1, in which case it also holds.

Since Rl is changed to VERTEX only at Line 26 in Algorithm 6, when all the vertices in the
pivot cell are found equivalent according to the three criteria just mentioned, it is guaranteed
that all the vertices in the pivot cell are certainly equivalent. Also, from Lemma 6.4, this
equivalence must hold for the other graph, in case an equivalent sequence of partitions exists
for that graph. Hence, eliminating this backtracking point is not an impediment for finding an
equivalent sequence of partitions if it exists, and it will be enough to try one vertex in the pivot
cell at this level. This argument may be applied to all the eliminated backtracking points.

Besides, in Algorithm 10, the orbit partition partition of graph H is used to prune the search
at the remaining backtracking points. However, this equivalences among vertices are considered
only in the case that all the vertices already discarded belonged to singleton orbits. From
Observation 6.1, for each two vertices u and v that belong to the same semiorbit in a semiorbit
partition, there is at least one automorphism that fixes all the vertices that belong to singleton
semiorbits and permutes u and v. Hence, there is an automorphism that permutes them and
fixes all the vertices already discarded (since they belong to singleton orbits). Thus, if one of
them did not lead to a compatible sequence of partitions, none of the members of its orbit will.

Consequently, the pruning achieved by Algorithms 6 and 10 do not eliminate paths in the search
tree that might lead to an isomorphism of graphs G and H. Therefore, if Algorithm 10 returns
FALSE, there is no sequence of partitions compatible with the target, and, from Lemma 5.1,
graphs G and H are not isomorphic. If Algorithm 10 finds a sequence of partitions for one graph
which is compatible with the one generated for the other graph, from Lemma 5.2, graphs G and
H are isomorphic. Hence, Algorithm AreIsomorphic2 returns TRUE if and only if graphs G
and H are isomorphic.

6.5 Performance Evaluation

In this section, we compare the performance of algorithm conauto-v0 with sinauto, nauty-2.2,
and vf2. The tests have been carried out under the same environment described in Section 5.4
using the same benchmark.

Random graphs are not likely to have automorphisms. Therefore, adding automorphism de-
tection and management should not have a noticeable effect in the algorithm. In fact, most
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probably, no alternative sequences of partitions will be generated, since there will be no back-
tracking points in the sequences of partitions. This explains the results shown in Figure 6.5,
where the plots for sinauto and conauto-v0 overlap.
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Figure 6.5: Performance of conauto-v0 with isomorphic randomly connected graphs.

2D-meshes are graphs that have only a few automorphisms, and whose structure is quite sym-
metric. This makes their automorphisms easy to find. As it can be seen in Figure 6.6, conauto-v0
improves the performance of sinauto for both the directed and the undirected versions of the
graphs. In fact, for the undirected meshes of the biggest size tested (graphs of 1024 vertices)
conauto-v0 becomes the fastest. Like sinauto, conauto-v0 offers a uniform behavior for both the
directed and the undirected versions of the graphs.
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Figure 6.6: Performance of conauto-v0 with isomorphic 2D-meshes.

The results for Miyazaki’s Fürer gadgets are shown in Figures 6.7 and 6.8. The improvement
achieved is spectacular. First, there is no exponential behavior in conauto-v0, for any of the
cases considered. (Note that for the directed version of the graphs, nauty was unable to process
the graphs of 40 vertices within the time limit imposed.) Second, the behavior of conauto-v0
with isomorphic and non-isomorphic graphs is very similar, which was not the case with sinauto.
Again, we have that conauto-v0 has a quite uniform behavior. Last, we observe that the directed
graphs are quite easier to process than their undirected versions for conauto-v0. That is because
the directed version of the graphs gives more information than the undirected version, which
allows a finer vertex classification, and helps in finding automorphisms.

In Figure 6.9, we show the results obtained for Paley graphs. Both for graphs of prime size
and square prime size, conauto-v0 is the fastest for the graphs of the biggest size considered
(improving the performance of sinauto). Besides, it exhibits the most uniform behavior, although
graphs of square prime size are harder than those of prime size (except for vf2).

Figure 6.10 shows the results for triangular and lattice graphs. Although conauto-v0 improves
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Figure 6.7: Performance of conauto-v0 with isomorphic Miyazaki’s Fürer gadgets.
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Figure 6.8: Performance of conauto-v0 with non-isomorphic Miyazaki’s Fürer gadgets.
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Figure 6.9: Performance of conauto-v0 with Paley graphs.

the results of sinauto for both families of graphs, it is roughly one order of magnitude slower
than vf2. However, the results of conauto-v0 are much like those of nauty, what we consider a
good result.

Latin square graphs seem to be a harder family of strongly regular graphs than those just
considered (Paley, triangular, and lattice graphs). The results for these graphs are shown in
Figure 6.11. For this family of graphs, conauto-v0 is twice slower than sinauto for the isomorphic
graphs of the biggest size considered. This implies that looking for automorphisms in this family
of graphs is quite time-consuming for conauto-v0, since the search for the compatible sequence
of partitions can not be harder for conauto-v0 that it was for sinauto.

However, the results for non-isomorphic pairs of graphs show that, while sinauto was almost four
orders of magnitude above nauty, conauto-v0 is only two orders of magnitude above nauty. This
shows a considerable improvement. Nevertheless, we would like this performance to be further
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Figure 6.10: Performance of conauto-v0 with triangular and lattice graphs.

improved. Certainly, the automorphism management of nauty must be much more powerful
than ours (but also harder to implement). Anywhere, these results show that we are in the good
path.
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Figure 6.11: Performance of conauto-v0 with Latin square graphs.

The results for the unions of tripartite graphs are shown in Figures 6.12 and 6.13. This is
a family of graphs that has many isomorphic components. This means that there are many
automorphisms. However, this type of automorphisms is not easy to discover. As in the case
of Latin square graphs, conauto-v0 is slower than sinauto for the isomorphic tests, but is faster
for the non-isomorphic ones. It still seems exponential, though. This is due to the fact that
it can not discover that two components are isomorphic and processes them again and again.
The improvement achieved comes from the automorphisms found among vertices of the same
component. Hence, something else must be done to make our algorithm faster.
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Figure 6.12: Performance of conauto-v0 with isomorphic unions of tripartite graphs.

Unions of strongly regular graphs are a very hard family of graphs that is similar to the previous
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Figure 6.13: Performance of conauto-v0 with non-isomorphic unions of tripartite graphs.

one. As it is shown in Figure 6.14, conauto-v0 is slower than sinauto (but still polynomial) with
positive tests, while it can not find an answer for graphs above 600 vertices for non-isomorphic
pairs of graphs. The explanation is the same given for the unions of tripartite graphs: dealing
with components in the graphs. This will be our main issue in the next version of the algorithm,
conauto-v1.
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Figure 6.14: Performance of conauto-v0 with unions of strongly regular graphs.

The results for the point-line graphs of Desarguesian projective planes are shown in Figure 6.15.
As it can be seen, conauto-v0 improves the results of sinauto. While sinauto was able to process
graphs of up to 114 vertices, conauto-v0 can deal with graphs of 146 vertices. However, this is
a very small improvement, and nauty goes one step beyond (graphs of 182 vertices). The tricky
thing is that vf2 is as fast as nauty. If we were able to find an explanation for this, perhaps we
would be able to improve our algorithm. However, we conjecture that the answer might be in
finding more powerful refinements (based on more powerful invariants).
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Figure 6.15: Performance of conauto-v0 with point-line graphs of Desarguesian projective planes.
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Chapter 7

Detecting Components

Algorithm conauto-v0 has overcome some of the weaknesses of sinauto. However, there are still
some graph families in our benchmark that are hard for conauto-v0. Among them are the ones
that are built as unions of simple components. These are the unions of tripartite graphs and
the unions of strongly regular graphs. While the positive tests for these graphs run fast, the
negative ones become very much harder.

However, there are some hints that should help us find a solution for that problem. For instance,
in the case of graphs that are the disjoint union of connected components, when matching a
graph, once a component of one graph has been found isomorphic to a component of the other
graph, it is of no use trying to match that same component to another component of the other
graph. Besides, if a component of a graph can not be matched against any component of the
other graph, it is of no use trying to match the rest of components, since, at the end, the graphs
can not be isomorphic. We have a particular interest in this kind of graphs, since they are
especially hard for nauty, and we want to find a way to overcome this handicap of nauty.

After a thorough study of the behavior of conauto-v0 for these graph families, we have concluded
that its performance can be drastically improved in these cases by directly applying the following
theorem:

Theorem 7.1 During the search for a sequence of partitions compatible with the target, back-
tracking from a level l to a level k < l, such that each cell of level l is contained in a different
cell of level k, can not provide a compatible partition.

Note that, when backtracking, the algorithm goes back until it reaches a previous backtracking
point, to try an alternative path in the search tree. Hence, in order to reduce the search space,
we want to backtrack directly to the highest backtracking point possible. With Theorem 7.1,
in some cases it will be possible to skip some backtracking points that are already known to be
unable to lead to a solution, hence improving performance.

Next we prove Theorem 7.1. Then, we describe algorithm conauto-v1 which applies Theorem 7.1.
We conclude this chapter with the evaluation of the practical performance of the new algorithm
conauto-v1, which meets our expectations.
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7.1 Proving Theorem 7.1

A backtracking point arises when a partition does not have singleton cells (suitable for a vertex
refinement) and it is not possible to refine such partition by means of a set refinement. Let us
introduce a new concept that will be useful in the following discussion.

Definition 7.1 Let G = (V,R) be a graph, and let S = (S1, ..., Sr) be a partition of V . S is said
to be equitable (with respect to G) if for all i ∈ {1, ..., r}, for all u, v ∈ Si, for all j ∈ {1, ..., r},
ADeg(u, Sj , G) = ADeg(v, Sj , G).

Observation 7.1 The partition at a backtracking point is equitable.

Proof: Assume otherwise. Then, there exists some Sj such that there are two vertices u, v in
some Si, such that ADeg(u, Sj , G) 6= ADeg(v, Sj , G). Therefore, it would be possible to perform
a set refinement on the partition, using Sj as the pivot cell, and vertices u and v would be
distinguished by this refinement, and cell Si would be split. This is not possible since, at a
backtracking point, no set refinement has succeeded.

Observation 7.2 Let l be a backtracking level. Let S l = (Sl
1, ..., S

l
r) be the partition at that

level. Then, for all i ∈ {1, ..., r}, GSl
i
is regular.

Proof: From Observation 7.1, S l is equitable. Fix i ∈ {1, ..., r}, then, from Definition 22, for
all u, v ∈ Sl

i, ADeg(u, Sl
i, G) = ADeg(v, Sl

i, G). Therefore, GSl
i
is regular, for all i ∈ {1, ..., r}.

Let Q = (S,R,P) be a sequence of partitions for graph G = (V,R) where S = (S0, ...,St),
R = (R0, ..., Rt−1), and P = (P 0, ..., P t−1). For all i ∈ {0, ..., t} let Si = (Si

1, ..., S
i
ri), and

V i =
⋃ri

j=1 S
i
j . We consider two backtracking levels k and l that satisfy the preconditions of

Theorem 7.1, i.e., k < l and each cell of S l is contained in a different cell of Sk.

Let p ∈ Sk
P k be the pivot vertex used for the vertex refinement at level k. Assume there is a

vertex q ∈ Sk
P k , q 6= p that satisfies the following. T k+1 = VertexRefinement(Sk, q, GV k) is a

partition that is compatible with Sk+1. Let T k+1 = (T k+1
1 , ..., T k+1

rk+1
), W k+1 =

⋃rk+1

j=1 T k+1
j . For

all i ∈ {k + 2, ..., l}, let T i = (T i
1, ..., T

i
ri) be compatible with Si, where W i =

⋃ri
j=1 T

i
j , T i =

SetRefinement(T i−1, T i−1
P i−1 , GW i−1) if Ri−1 = SET, and T i = VertexRefinement(T i−1, v, GW i−1)

for some v ∈ T i−1
P i−1 if Ri−1 6= SET. This generates an alternative sequence of partitions that is

compatible with the original one up to level l.

Under these premises, we show in the rest of the section that GV l and GW l are isomorphic, and
there is an isomorphism of them that matches the vertices in Sl

i to the vertices in T l
i for all

i ∈ {1, ..., rl}.

To simplify the notation, let us assume rk = rl = r. Note that in this case, for all i ∈ {1, ..., r},
Sl
i ⊆ Sk

i . In case rk 6= rl this correspondence is not trivial. However, we can safely assume
that there may be some Sl

i ∈ S l that are empty, and develop our argument considering this
possibility, although we know that in the real sequence of partitions, these empty cells would
have been discarded.

For all i ∈ {1, ..., r}, let Ei = Sk
i \ Sl

i, E
′
i = Sk

i \ T l
i be the vertices discarded in the refinements

from Sk
i to Sl

i and T l
i respectively, let Ai = Ei ∩E′

i be the vertices discarded in both alternative
refinements, Bi = Ei\Ai the vertices discarded only in the refinement from Sk

i to Sl
i, Ci = E′

i\Ai
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the vertices discarded only in the refinement from Sk
i to T l

i , and D = Sl
i ∩ T l

i the vertices
remaining in both alternative partitions at level l. Let A =

⋃r
i=1Ai, B =

⋃r
i=1Bi, C =

⋃r
i=1Ci,

D =
⋃r

i=1Di, E =
⋃r

i=1Ei, and E′ =
⋃r

i=1E
′
i. Clearly, E = A ∪ B, and E′ = A ∪ C. Observe

that |Ei| = |E′
i|, and hence |Bi| = |Ci| for all i ∈ {1, ..., r}.

E′
1 T l

1

E1 A1 B1

Sl
1 C1 D1

. . .
E′

r T l
r

Er Ar Br

Sl
r Cr Dr

Figure 7.1: Partition of Sk
i into subsets Ai, Bi, Ci, and Di for all i ∈ {1, ..., r}.

Observation 7.3 GE is isomorphic to GE′, and there is an isomorphism of them that matches
the vertices in Ei to those in E′

i, for all i ∈ {1, ..., r}.

Proof: Direct from the construction of the sequences of partitions.

Lemma 7.1 Let M = Adj (G). It is satisfied that:

• For each u ∈ E, for all i ∈ {1, ..., r}, for all v, w ∈ Sl
i, Muv = Muw and Mvu = Mwu.

• For each u ∈ E′, for all i ∈ {1, ..., r}, for all v, w ∈ T l
i , Muv = Muw and Mvu = Mwu.

Proof: Since none of the vertices in E has been able to distinguish among the vertices in cell
Sl
i, each of the discarded vertices has the same type of adjacency with all the vertices in Sl

i.
Otherwise, consider vertex u ∈ E. Assume u has at least two different types of adjacency with
the vertices in Sl

i. Since it was discarded during the refinements from Sk
i to Sl

i, that had to be
for one of the following reasons:

1. It was discarded for having no links (i.e. links of type 0), what is impossible since it has
two different types of adjacencies with the vertices in Sl

i.

2. It was used as the pivot set in a vertex refinement, what is impossible since it would have
been able to split cell Sl

i.

The same argument applies to the vertices in E′ with respect to the vertices in each cell T l
i .

Consider the adjacency between vertex u and vertex v is Muv = a for some a ∈ {0, ..., 3}. Then,
we will denote the adjacency between v and u (Mvu) as a−1. Note that if a = 0, a−1 = 0, if
a = 1, a−1 = 2, if a = 2, a−1 = 1, and if a = 3, a−1 = 3.

Lemma 7.2 For each i, j ∈ {1, ..., r}, there is some a ∈ {0, ..., 3} such that for all u ∈ Bi, v ∈
Ci, w ∈ Di, u

′ ∈ Bj, v
′ ∈ Cj, and w′ ∈ Dj, Muv′ = Muw′ = Mvu′ = Mvw′ = Mwu′ = Mwv′ = a

and Mu′v = Mu′w = Mv′u = Mv′w = Mw′u = Mw′v = a−1.

Proof: Let us take any i ∈ {1, ..., r} and any j ∈ {1, ..., r}. Since Bi ⊆ E and Cj ⊆ Sl
j , from

Lemma 7.1, for each u ∈ Bi, for all v′ ∈ Cj , Muv′ = a for some a ∈ {0, ..., 3}. Let us take any
such v′ ∈ Cj . Then, Mv′u = a−1 for those particular v′ and u. Besides, since Cj ⊆ E′ and
Bi ⊆ T l

i , from Lemma 7.1, for all u ∈ Bi, Mv′u = b for some b ∈ {0, ..., 3}. Since we already
know that Mv′u = a−1 for that particular pair of vertices, then we conclude that for all u ∈ Bi,
v′ ∈ Cj , Muv′ = a and Mv′u = a−1, for some a ∈ {0, ..., 3}.

Sl
j = Cj ∪Dj and Bi ⊆ E. Since for all u ∈ Bi, v

′ ∈ Cj , Muv′ = a and Mv′u = a−1, then from

Lemma 7.1, for all u ∈ Bi, w
′ ∈ Dj , Muw′ = a (clearly, the same a) and Mw′u = a−1.
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T l
i = Bi ∪Di and Cj ⊆ E′. Since for all u ∈ Bi, v

′ ∈ Cj , Muv′ = a and Mv′u = a−1, then from
Lemma 7.1, for all v′ ∈ Cj , w ∈ Di, Mv′w = a−1 and Mwv′ = a (clearly, the same a).

Furthermore, all the vertices in Sl
j = Cj ∪Dj have the same number of adjacent vertices of each

type in Ei = Ai ∪Bi. Otherwise, they would have been distinguished in the refinement process
from Sk to S l. Likewise, all the vertices in T l

j = Bj ∪ Dj have the same number of adjacent
vertices of each type in E′

i = Ai ∪ Ci. Otherwise, they would have been distinguished in the
refinement process from Sk to T l. Hence, the vertices of Dj must have the same number of
adjacent vertices of each type in Bi and Ci. Hence, since for all w′ ∈ Dj , and for all u ∈ Bi,
Muw′ = a and Mw′u = a−1, then for all w′ ∈ Dj , and for all v ∈ Ci, Mvw′ = a and Mw′v = a−1

too.

A similar argument may be used to prove that for all w ∈ Di, and for all u′ ∈ Bj , Mwu′ = a
and Mu′w = a−1. Then, from Lemma 7.1, since Bj ⊆ E, for all u′ ∈ Bj , Mu′x = Mu′y for all
x, y ∈ Sl

i. We already know that for all u′ ∈ Bj , Mu′w = a−1 for all w ∈ Di, and Sl
i = Ci ∪Di.

Hence, for all v ∈ Ci, Mu′v = a−1 too, and Mvu′ = a.

Putting together all the partial results obtained, we get the assertion stated in the lemma.

Corollary 7.1 Let M = Adj (G). For each i ∈ {1, ..., r}, it is satisfied that for all u ∈ Bi, v ∈
Ci, w ∈ Di, Muv = Mvu = Muw = Mwu = Mvw = Mwv = a, where a ∈ {0, 3}.
Proof: From Lemma 7.2, for the case i = j, we get that for all u ∈ Bi, v ∈ Ci, w ∈ Di, Muv =
Muw = Mvu = Mvw = Mwu = Mwv = a and Muv = Muw = Mvu = Mvw = Mwu = Mwv = a−1.
Hence, it must hold that a = a−1, so a ∈ {0, 3}.

Let us define two families of partitions of Ai for i, j ∈ {1, ..., r}:

Acj
i = {x ∈ Ai : ∀u ∈ Bi, v

′ ∈ Cj ,Mxv′ = Muv′}

Anj
i = {x ∈ Ai : ∀u ∈ Bi, v

′ ∈ Cj ,Mxv′ 6= Muv′}
Note that, since the vertices of Ai are unable to distinguish among the vertices of Cj , then,
if Mxv′ 6= Muv′ for some u ∈ Bi or some v′ ∈ Cj , then Mxv′ 6= Muv′ for all u ∈ Bi and all

v′ ∈ Cj . Hence, each pair of sets Acj
i and Anj

i defines a partition of Ai. Note also that, since
each vertex in Ai has the same type of adjacency with all the vertices in Bi ∪ Ci ∪ Di (from
Lemma 7.1), then for all x ∈ Acj

i , u ∈ Bi, v ∈ Ci, w ∈ Di, u
′ ∈ Bj , v

′ ∈ Cj , and w′ ∈ Dj ,
Mxu′ = Mxv′ = Mxw′ = Muv′ = Muw′ = Mvu′ = Mvw′ = Mwu′ = Mwv′ (from Lemma 7.2).

E′
i T l

i

Ei
An

i

Ac
i

Bi

Sl
i Ci Di

Figure 7.2: Partition of Ai into subsets Ac
i , and An

i .

Lemma 7.3 For all i ∈ {1, ..., r}, let Ac
i =

⋂r
j=1A

cj
i , and let An

i =
⋃r

j=1A
nj
i . Then, any

isomorphism of GE and GE′ that maps GEi to GE′

i
, maps the vertices in An

i among themselves.

Proof: From Observation 7.1, partition Sk is equitable. Hence, for each i, j ∈ {1, ..., r}, for all
u, v ∈ Sk

i , ADeg(u, Sk
j , G) = ADeg(v, Sk

j , G). Thus, for all x ∈ Acj
i , y ∈ Anj

i , u ∈ Bi, v ∈ Ci, w ∈
Di, ADeg(x, Sk

j , G) = ADeg(y, Sk
j , G) = ADeg(u, Sk

j , G) = ADeg(v, Sk
j , G) = ADeg(w, Sk

j , G).
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Let us take any pair of values of i and j. From Lemma 7.2, all the vertices of Bi have the same
type of adjacency with all the vertices of Sl

j = Cj∪Dj . Assume this type of adjacency is a. From

the definition of Acj
i , all the vertices of Acj

i have adjacency a with all the vertices of Sl
j . Hence,

for x ∈ Acj
i , u ∈ Bi, ADeg(x, Sl

j , G) = ADeg(u, Sl
j , G). Since ADeg(x, Sk

j , G) = ADeg(u, Sk
j , G)

and ADeg(x, Sl
j , G) = ADeg(u, Sl

j , G), then ADeg(x,Ej , G) = ADeg(u,Ej , G) (note that Ej =

Aci
j ∪Ani

j ∪Bj , S
l
j = Cj ∪Dj , and Sk

j = Ej ∪ Sl
j).

However, from the definition of Anj
i , for y ∈ Anj

i , ADeg(y, Sl
j , G) 6= ADeg(x, Sl

j , G). Hence, since

ADeg(y, Sk
j , G) = ADeg(x, Sk

j , G), ADeg(y,Ej , G) 6= ADeg(x,Ej , G).

Since any isomorphism must match vertices with the same degree, every isomorphism of GE and
GE′ that maps GEi to GE′

i
, maps the vertices in Anj

i among themselves.

Applying this argument over all possible values of j, we get that any isomorphism of GE and
GE′ that maps GEi to GE′

i
, maps the vertices in An

i among themselves, for all i ∈ {1, ..., r}.

Let us focus on any isomorphism π of GE and GE′ that maps GEi to GE′

i
for all i ∈ {1, ..., r}

(there is at least one from Observation 7.3).

Lemma 7.4 GB is isomorphic to GC , and there is an isomorphism of them that matches the
vertices in Bi to those in Ci, for all i ∈ {1, ..., r}.

Proof: Let us analyze the adjacencies between the vertices in Ac
i , Bi, Ci, A

c
j , Bj , and Cj for

some values of i and j. From Corollary 7.1, for all u ∈ Bi, v ∈ Ci, Muv = Mvu = a, where
a ∈ {0, 3}. From the definition of Ac

i , for all x ∈ Ac
i , Mxu = Mxv = Mux = Mvx = Muv = a.

From Lemma 7.3, the vertices of An
i are mapped among themselves in any isomorphism π of

GE and GE′ that maps GEi to GE′

i
. Hence, the vertices of Ac

i ∪ Bi must be mapped to the
vertices of Ac

i ∪ Ci. If a = 0, then Ac
i , Bi, and Ci are disconnected. Hence, GBi and GCi must

be isomorphic. In the case a = 3, taking the inverses of the graphs leads to the same result.

From Lemma 7.2, for each i, j ∈ {1, ..., r}, there is some a ∈ {0, ..., 3} such that for all u ∈ Bi,
v ∈ Ci, u

′ ∈ Bj , v
′ ∈ Cj , Muv′ = Mvu′ = a and Mu′v = Mv′u = a−1. From the definition of Ac

i ,
for all x ∈ Ac

i , for all u ∈ Bi, v ∈ Ci, u
′ ∈ Bj , v

′ ∈ Cj , Mxu′ = Mxv′ = Muv′ .
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Figure 7.3: Adjacencies between Ei and Ej , and between E′
i and E′

j .

Putting all this together, we come to a picture of the adjacencies among Ac
i , Bi, Ci, A

c
j , Bj ,

and Cj as shown in Figure 7.3. The connections between the vertices of Ac
i and the vertices of

Bi, and between the vertices of Ac
i and the vertices of Ci are all-to-all (all the same) of value

0 or 3. Similarly, the adjacencies between the vertices of Ac
j and the vertices of Bj , and the

adjacencies between the vertices of Ac
j and the vertices of Cj are all the same, all-to-all 0 or 3

(not necessarily equal to those of Ac
i and Bi or Ci). The adjacencies between Ac

i and Bj ∪ Cj
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are all the same, all-to-all of any value in the set {0, ..., 3}. This also applies to the adjacencies
between Ac

j and Bi ∪ Ci.

If GBi∪Bj is not isomorphic to GCi∪Cj , the discrepancy must be in the adjacencies between
vertices of Bi and Bj with respect to the adjacencies between vertices of Ci and Cj . In such
a case, in the isomorphism π between GEi∪Ej and GE′

i∪E
′

j
(recall that from Observation 7.3

there is an isomorphism of GE and GE′ that maps the vertices of Ei to the vertices in E′
i for all

i ∈ {1, ..., r}) some vertices of Ac
i should be mapped to vertices of Ci, and some of the vertices

of Bi should be mapped to vertices of Ac
i . However, due to the adjacencies among Ac

i , Bi,
Ci, A

c
j , Bj , and Cj , shown in Figure 7.3, that would imply that the adjacencies between the

vertices of Bi and Bj had to match adjacencies between the vertices of Ai
c and Aj

c. But, in that
case, the same adjacency pattern must exist between the vertices of Ci and Cj , to match the
corresponding subgraph of GEi∪Ej . Hence, the adjacencies between Bi and Bj could have been
matched to the adjacencies between Ci and Cj .

Since this applies for all values of i and j, we conclude that GB is isomorphic to GC , and there
is an isomorphism of them that matches the vertices in Bi to those in Ci, for all i ∈ {1, ..., r},
completing the proof.

Lemma 7.5 GV l and GW l are isomorphic, and there is an isomorphism of them that maps the
vertices in Sl

i to the vertices of T l
i for all i ∈ {1, ..., r}.

Proof: From Lemma 7.2, we know that for each i, j ∈ {1, ..., r}, there is some a ∈ {0, ..., 3}
such that for all u ∈ Bi, v ∈ Ci, w ∈ Di, u

′ ∈ Bj , v
′ ∈ Cj , and w′ ∈ Dj , Muv′ = Muw′ = Mvu′ =

Mvw′ = Mwu′ = Mwv′ = a and Mu′v = Mu′w = Mv′u = Mv′w = Mw′u = Mw′v = a−1. Note
also that, from Corollary 7.1, for all u ∈ Bi, v ∈ Ci, w ∈ Di, Muv = Mvw = Mwu = a, where
a ∈ {0, 3}. This adjacency pattern is graphically shown in Figure 7.4.
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Figure 7.4: Adjacencies between Sl
i and Sl

j , and between T l
i and T l

j .

From Lemma 7.4, we know that GB is isomorphic to GC , and there is an isomorphism of them
that matches the vertices in Bi to those in Ci, for all i ∈ {1, ..., r}.
From the fact that GD is isomorphic to itself, and the previous considerations on the adjacency
pattern between the vertices in Bi, Ci, Di, Bj , Cj , and Dj for all i, j ∈ {1, ..., r}, shown in
Figure 7.4, it is easy to see that the isomorphism of GB and GC obtained from Lemma 7.4,
toghether with the trivial automorphism of GD yields an isomorphism of GV l and GW l , what
completes the proof.

We have shown that if two alternative sequences of partitions Sk+1, ..., Sl and T k+1, ..., T l lead to
compatible partitions Sl and T l, where all their cells are subcells of different cells of a previous
common level k, then the remaining subgraphs are isomorphic, and the vertices in each cell of
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one partition may be mapped to the vertices in its corresponding cell in the other partition
by one such isomorphism. Thus, if during the search for a sequence of partitions compatible
with the target, we have got an incompatibility at some point beyond level l, and we have to
backtrack from one level l to another level k in which all the cells are different supersets of
the cells in the current backtracking point, when trying a compatible path, we will get to the
same dead-end. Hence, it is of no use to try another path from one such level k, and it will be
necessary to backtrack to some point where at least two cells in the current backtracking point
are subsets of the same cell in the previous backtracking point. This proves Theorem 7.1.

7.2 Algorithm conauto-v1

Algorithm conauto-v1 is the result of applying Theorem 7.1 to algorithm conauto-v0. This new
algorithm is only slightly different from the previous one. When backtracking is needed, the
algorithm will try to backtrack directly to the highest possible level, i.e., the nearest upper level
where at least two cells with links in the current level belong to the same cell.

This improvement has a limited field of application, since it can only speed up the cases of
graphs built from components, either disconnected, fully connected, or even, in some special
cases, partially connected. A family of graphs that will benefit from this new heuristic is the
unions of strongly regular graphs, which are known to be very hard for nauty.

7.2.1 Main Algorithm

Algorithm 11 describes the behavior of conauto-v1. Like the previous algorithms, it receives
two graphs G and H as parameters and returns TRUE if both graphs are isomorphic, and
FALSE if they are not. The only difference with conauto-v0 comes from the fact that Algorithm
Match3 returns a value that may be negative, in which case it has been impossible to find an
isomorphism of graphs G and H, so FALSE is returned, or may be a positive value, in which
case an isomorphism has been found and the algorithm returns TRUE. The rest of algorithms
used are the same ones described in Section 6.2.2.

7.2.2 Search for a Sequence of Partitions Compatible with the Target

The new piece of Algorithm 11 is Algorithm Match3 , described as Algorithm 12. Algorithm 12
works in the following way: if an isomorphism of G and H is found, it returns t (the number of
levels in the sequence of partitions, which is always positive). If it has been impossible to find
such an isomorphism, it returns −1. The actual value returned indicates up to which level it is
necessary to backtrack to continue the search (if it is smaller than l), that an isomorphism has
been found (if it is t), or that another option must be taken at this level, if possible (if it is l).
To do so, it works in the following way:

• If at level t all the adjacencies are satisfied, then it returns t (an isomorphism has been
found).

• If Rl = VERTEX, then a vertex refinement is performed (line 33). If the resulting partition
is compatible with S l+1 (tested at line 38), then a recursive call is made, to proceed to
the next level (line 39). Otherwise, since an incompatibility has been found, it returns to
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Algorithm 11 Test whether G and H are isomorphic (conauto-v1).

AreIsomorphic3 (G,H) : boolean
1 - - let G = (VG, RG) and H = (VH , RH)
2 if (|VG| 6= |VH |) ∨ (|RG| 6= |RH |) then
3 return FALSE
4 else

5 DG ← DegreePartition(G)
6 DH ← DegreePartition(H)
7 if DG and DH are not compatible under G and H respectively then

8 return FALSE
9 else

10 QG ← GenerateSequenceOfPartitions(G,DG)
11 QH ← GenerateSequenceOfPartitions(H,DH)
12 EG ← FindAutomorphisms(G,QG)
13 EH ← FindAutomorphisms(H,QH)
14 if BacktrackAmount(SeqPart(EG)) ≤ BacktrackAmount(SeqPart(EH)) then
15 return (0 ≤ Match3 (0, G,H,SeqPart(EG),DH ,Orbits(EH)))
16 else

17 return (0 ≤ Match3 (0, H,G,SeqPart(EH),DG,Orbits(EG)))
18 end if

19 end if

20 end if

a previous level that satisfies the condition of Theorem 7.1 (lines 45 and 46). Note that,
if the partition at the current level is equitable, then clearly Theorem 7.1 applies, and if
the partition at the current level is not equitable, then the value max k ∈ Y would be the
nearest backtracking point, yielding the same result of Match2 .

If a recursive call was made, then the value returned by this call must be evaluated. If the
call returned a value which is bigger than l, then it must be t, and an isomorphism has
been found, so that value must be returned also by this invocation to the algorithm (lines
40 and 41). If it returned a value smaller than l, it is necessary to backtrack, at least,
to that level to be able to find an isomorphism. The reason is that a subsequent level,
an incompatibility was found, and, applying Theorem 7.1, it was decided to backtrack to
level m). Hence, that same value is returned to the caller (lines 40 and 41).

If the recursive call at line 39 returned a value m = l, then, since this is not a backtracking
point, it is necessary to backtrack. Lines 45 and 46 decide to which level it is necessary to
backtrack from this level, just as if the incompatibility had been found at this level.

• If Rl = SET, then a set refinement is performed, and the algorithm behaves the same as
in the previous case, where Rl = VERTEX.

• In the case where Rl = BACKTRACK, the algorithm has to try possible matchings for the
pivot vertex, until an isomorphism is found or all the choices have been tried or discarded.
When the vertex refinement results in a new partition T ′ that is compatible with S l+1,
a recursive call is made. Otherwise, the next possible choice will be tried in the next
iteration. As in the previous cases, this call returns a value m which can be bigger, equal,
or less than l.

If m = l, a new choice is tried, just as if the incompatibility were found at this level.

If m > l, then, it must be t, in which case an isomorphism has been found, so that value
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Algorithm 12 Find a sequence of partitions compatible with the target (conauto-v1).

Match3 (l, G,H,QG, T ,OH) : integer
1 - - let QG = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
2 - - let Sl = (Sl

1, ...S
l
rl
), V l =

⋃rl
j=1 S

l
j , for all l ∈ {0, ..., t}

3 - - let H = (VH , RH), let T = (T1, ...Trl),W =
⋃rl

j=1 Tj

4 if l = t then
5 if ∀x, y ∈ {1, ..., rl},ADeg(St

x, S
t
y, G) = ADeg(Tx, Ty, H) then

6 return t
7 end if

8 else

9 X ← TP l

10 if Rl = BACKTRACK then

11 orbitsApplicable ← ∀v ∈ VH \W, |Orb(v,OH)| = 1
12 for each v ∈ X do

13 Valid(Orb(v,OH))← TRUE
14 end for

15 repeat

16 v ← any vertex in X
17 X ← X \ {v}
18 if ¬orbitsApplicable ∨ Valid(Orb(v,OH)) then
19 T ′ ← VertexRefinement(T , v,HW )
20 - - let T ′ = (T ′

1, ..., T
′

r),W
′ =

⋃r

j=1 T
′

j

21 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

22 m← Match3 (l + 1, G,H,QG, T ′,OH)
23 if l 6= m then

24 return m
25 end if

26 end if

27 Valid(Orb(v,OH))← FALSE
28 end if

29 until X = ∅
30 else

31 if Rl = VERTEX then

32 v ← any vertex in X
33 T ′ ← VertexRefinement(T , v,HW )
34 else (i.e. Rl = SET)
35 T ′ ← SetRefinement(T , X,HW )
36 end if

37 - - let T ′ = (T ′

1, ..., T
′

r),W
′ =

⋃r

j=1 T
′

j

38 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

39 m← Match3 (l + 1, G,H,QG, T ′,OH)
40 if l 6= m then

41 return m
42 end if

43 end if

44 end if

45 - - let X = {Sl
i : HasLinks(S

l
i, V

l, G)}, Y = {−1} ∪ {k < l : ∃Sl
i, S

l
j ∈ X : ∃Sk

x ∈ Sk : Sl
i, S

l
j ⊆ Sk

x}
46 return max k ∈ Y

is returned. This is done in lines 23 and 24.

If m < l, then an incompatibility was found in a subsequent level, and applying the result
of Theorem 7.1, it is not necessary to try any other possibility at this level, so m is directly
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returned. This is accomplished by lines 23 and 24.

When all the possibilities have been tried unsuccessfully, backtracking is needed. Then,
applying Theorem 7.1 in lines 44 and 45, the algorithm tries to find a previous level where
at least two of the cells in the current partition were not differentiated yet. If one such
level is found, it is returned to the caller, so that the algorithm backtracks directly to that
level, no matter whether there are intermediate backtracking points. If there is no such
level, then −1 is returned, since no possible isomorphism can be found.

7.3 Performance Evaluation

In this section we will show how the presented improvement benefits the families of graphs that
are built making unions of simple regular graphs. These are the unions of strongly regular
graphs, and the unions of tripartite graphs. Since this improvement has very little computation
cost, and it is not useful for the other families of graphs, we will not show those results, since
they are almost exactly the same as the ones presented for the previous version of the algorithm.
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Figure 7.5: Performance of conauto-v1 with isomorphic unions of tripartite graphs.

Figure 7.5 compares the performance of conauto-v1 with conauto-v0, nauty, and vf2, for iso-
morphic unions of tripartite graphs. In this case, there is no improvement in the performance
since the only backtracking that may be necessary in this case is that to match independent
components, and that is not avoidable with the new technique. Hence, the performance of
conauto-v1 is exactly the same as the one of conauto-v0. However, this is not a bad result, since
the performance of conauto-v0 was already good.
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Figure 7.6: Performance of conauto-v1 with non-isomorphic unions of tripartite graphs.

For the case of non-isomorphic unions of tripartite graphs, algorithm conauto-v1 exhibits a much
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better behavior than its predecessors. Figure 7.6 shows that the time required by conauto-
v1 to process non-isomorphic graphs resembles a polynomial time complexity, what meets our
expectations. Comparing the results of Figures 7.5 and 7.6, it can be seen that the time required
for positive and negative cases has become almost exactly the same.
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Figure 7.7: Performance of conauto-v1 with unions of strongly regular graphs.

Algorithm conauto-v1 exhibits, with unions of strongly regular graphs, a uniform behavior for
the positive and negative cases, as can be seen in Figure 7.7. Again its time complexity looks
polynomial, unlike nauty and vf2, for which this family of graphs is too hard.

Note also that the theoretical result on which conauto-v1 relies does not only apply to disjoint
unions of graphs, and fully connected unions of graphs. The result is more general, and partial
unions may also benefit from this result.
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Chapter 8

Further Automorphism Detection

Algorithm conauto-v1 has shown its effectiveness on unions of graphs. However, the improve-
ment introduced in algorithm conauto-v1 has no effect on other families of graphs. Hence, for
instance, the Latin square graphs and the point-line graphs of Desarguesian projective planes
remain as hard families for our algorithms. In this chapter we will focus on the former family of
graphs. First of all, note that Latin square graphs are vertex-transitive. Algorithms conauto-v0
and conauto-v1 are unable to discover that, though. In fact, what happens is that they leave
two backtracking points at the beginning of any sequence of partitions for a Latin square graph.
Performing a limited search for automorphisms (like the one done in the previous versions of
conauto) is very effective in the case of Miyazaki’s Fürer gadgets but, in this case, it limits the
ability of those algorithms to find automorphisms that could greatly improve the performance.

In our new algorithm conauto-v2, we will add the possibility of performing a deeper search
for automorphisms in some cases where it may help. This has to be done preventing at the
same time the algorithm from doing that in the cases where it might be inadequate, like the
case of Miyazaki’s Fürer gadgets, or union graphs. Since computing a complete sequence of
partitions is quite expensive (though polynomial in time), it would be desirable to be able to
establish vertex transitivity generating as few sequences of partitions, and subsequent searches
for automorphisms as possible.

Something that we have observed for our family of Latin square graphs is that the sequences
of partitions they yield have two levels of backtracking (the first two in the sequence). The
other backtracking points in the sequences of partitions are eliminated during the search for
automorphisms. Hence, we will apply this new technique only when the two first levels of the
sequence of partitions are the only backtracking points in the sequence, after the basic search
for automorphisms has been performed. This may be too restrictive, but we can not generalize
the field of application of this technique yet.

Besides, since performing this additional search for automorphisms requires significant processing
time, we will perform it only on one of the graphs being tested, the one in which the search for
a sequence of partitions compatible with the target will be performed. To manage several orbit
partitions and operate with them, some new notation needs to be introduced.
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8.1 Algorithm conauto-v2

In the algorithms presented, only one orbit partition is used for each graph. However, in
conauto-v2, more than one sequence of partitions may be generated if the algorithm consid-
ers it convenient to do so. Hence, it is necessary to represent and manage such collections of
orbit partitions. One way to do so is to manage all the partitions for a graph as a sequence of
orbit partitions. Note that, although for simplicity we refer to them as orbit partitions, we mean
semiorbit partitions (see Definition 6.2), since they are not (necessarily) true orbit partitions.

Definition 8.1 A sequence of semiorbit partitions SO is an ordered set of semiorbit partitions.
∅ will denote the empty sequence of semiorbit partitions. We will use the operator + to append
a new semiorbit partition to a sequence of semiorbit partitions. Let O be a semiorbit partition.
If SO = ∅, then SO+ O = (O). If SO = (O1, ...,On), then SO+ O = (O1, ...,On,O).

8.1.1 Main Algorithm

Algorithm 13 (conauto-v2) differs from the previously presented algorithms in that, after ob-
taining the extended sequences of partitions, with the basic orbits, for both graphs, it tests if
searching for more automorphisms might help pruning the subsequent search for the compat-
ible sequence of partitions (in particular, if the first two levels in the sequence of partitions
SeqPart(EG) are the only backtrack levels). In such a case, it calls Algorithm 15 to search
for more automorphisms, obtaining a sequence of orbit partitions for graph G, and then calls
Algorithm 17 passing to it, instead of the basic orbits obtained in the first search for automor-
phisms, the sequence of orbit partitions computed by Algorithm 15. If it is not worth looking
for more automorphisms, it calls Algorithm 17 passing to it a sequence of orbit partitions that
only contains the basic orbits. In this case, the behavior of Algorithm 17 will be exactly the
same as that of Algorithm 12.

Like in the case of conauto-v1, if the algorithm that performs the search for the compatible
sequence of partitions, in this case Match4 , returns −1, the graphs are not isomorphic, and
otherwise they may be.

8.1.2 Generation of a Sequence of Partitions

Algorithm 14 is used to generate a sequence of partitions. In addition to the parameters of Algo-
rithm 2, it has a new parameter F used to generate sequences of partitions with different initial
pivot vertices in the case it is used to find more automorphisms with Algorithm 15. This pa-
rameter indicates which vertices must be excluded from the pivot set selected by IndexBestPivot
in the first level of backtracking. When F = ∅, this algorithm behaves exactly as Algorithm 2.
When F 6= ∅, in the first level marked as BACKTRACK, only the vertices of the pivot cell that
are not in F are considered as possible pivot vertices for the vertex refinement (line 27). Note
that after its first use, F takes value ∅, so that it is not used again.

8.1.3 Extended Look for Automorphisms

Algorithm 15 (FindMoreAutomorphisms) receives the graph to be searched for automorphisms
G, its degree partition D, and its basic orbits O which were computed by Algorithm 6, and
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Algorithm 13 Test whether G and H are isomorphic (conauto-v2).

AreIsomorphic4 (G,H) : boolean
1 - - let G = (VG, RG) and H = (VH , RH)
2 if (|VG| 6= |VH |) ∨ (|RG| 6= |RH |) then
3 return FALSE
4 else

5 DG ← DegreePartition(G)
6 DH ← DegreePartition(H)
7 if DG and DH are not compatible under G and H respectively then

8 return FALSE
9 else

10 QG ← GenerateSequenceOfPartitions2 (G,DG, ∅)
11 QH ← GenerateSequenceOfPartitions2 (H,DH , ∅)
12 EG ← FindAutomorphisms(G,QG)
13 EH ← FindAutomorphisms(H,QH)
14 - - let SeqPart(EG) = (S,R,P), and let P = (P 0, ..., P t−1)
15 if (∀i ∈ {0, 1}, Ri = BACKTRACK) ∧ (∀i ∈ {2, ..., t− 1}, Ri 6= BACKTRACK) then
16 - - let S = (S0, ...,St)
17 - - let p be the pivot vertex used to generate partition S1 from partition S0
18 SO← FindMoreAutomorphisms(G,DG,Orbits(EG), {p})
19 else

20 SO← (Orbits(EG))
21 end if

22 return 0 ≤ Match4 (0, H,G,SeqPart(EH),DG, SO)
23 end if

24 end if

returns a sequence of orbit partitions, built from the basic orbits and the new orbit partitions
found. The last orbit partition in the sequence will be what we will call the global orbit partition;
that that comes from merging all the other orbit partitions generated. Since we can only use orbit
partitions when all the vertices fixed during the search for a compatible sequence of partitions
belong to a singleton orbit, it is important to keep the orbit partitions generated with some
vertex fixed (that belongs to a singleton orbit). This way, they will be applicable when that
vertex is fixed during the search.

The global orbit partition will be stored, temporarily, in O′ before it is added to the sequence
returned by FindMoreAutomorphisms.

8.1.4 Computing Orbits Applicable

A feature that is essential to conauto-v2 is that it operates with orbit partitions. It not only
uses vertex equivalences explicitly found during the polynomial-time search for automorphisms,
but it is also able to compute new ones applying automorphism composition. Given a sequence
of orbit partitions, Algorithm 16 computes the vertex equivalences suitable for a certain point
of backtracking, according to the information available on automorphisms.

If we have computed an orbit partition in which there are singleton orbits, that means that
there are automorphisms that fix those vertices, and permute, in some way, the vertices in
the orbits with more than one vertex. However, not all possible permutations of these latter
vertices will yield a valid automorphism. The existence of an automorphism that permutes two
vertices does not imply that at any point in the search for a compatible sequence of partitions,
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Algorithm 14 Generate a sequence of partitions for a graph G (conauto-v2).

GenerateSequenceOfPartitions2 (G,D, F ) : sequence of partitions
1 - - let G = (V,R)
2 - - for all l > 0, if Sl is defined, let Sl = (Sl

1, ..., S
l
rl
), V l =

⋃rl
j=1 S

l
j

3 S0 ← D
4 for each S0

x ∈ S0 do

5 Valid(S0
x)← (|S0| > 1) ∧HasLinks(S0

x, V
0, G)

6 end for

7 l← 0
8 while ∃Sl

x ∈ Sl : (|Sl
x| > 1) ∧ HasLinks(Sl

x, V
l, G) do

9 P l ← IndexBestPivot(Sl, G)
10 if |Sl

P l | = 1 then

11 Rl ← VERTEX
12 v ← the only vertex in Sl

P l

13 Sl+1 ← VertexRefinement(Sl, v,GV l)
14 else

15 success ← FALSE
16 while Valid(Sl

P l) ∧ ¬success do

17 Valid(Sl
P l)← FALSE

18 Rl ← SET
19 Sl+1 ← SetRefinement(Sl, Sl

P l , GV l)

20 success ← ∃Sl+1
x , Sl+1

x+1 : Sl+1
x , Sl+1

x+1 ⊂ Sl
y for some Sl

y ∈ Sl
21 if ¬success then

22 P l ← IndexBestPivot(Sl, G)
23 end if

24 end while

25 if ¬success then

26 Rl ← BACKTRACK
27 v ← any vertex in Sl

P l \ F
28 F ← ∅
29 Sl+1 ← VertexRefinement(Sl, v,GV l)
30 end if

31 end if

32 l← l + 1
33 for each Sl

x ∈ Sl do
34 - - let Sl

x ⊆ Sl−1
y , Sl−1

y ∈ Sl−1

35 Valid(Sl
x)← HasLinks(Sl

x, V
l, G) ∧ (Valid(Sl−1

y ) ∨ (|Sl
x| < |Sl−1

y |))
36 end for

37 end while

38 t← l
39 S← (S0, ...,St);R← (R0, ..., Rt−1);P← (P 0, ..., P t−1)
40 return (S,R,P)

if they are both in the pivot set of a backtracking point, they may be considered equivalent.
That only applies when there is an automorphism that permutes them, and fixes all the vertices
discarded during the generation of the sequence of partitions, in the previous levels. Recall that
the automorphism induced by two compatible sequences of partitions is determined by the order
it induces on the vertices of the graphs, and all the vertices previously discarded hold the same
place in both orders.

Algorithm FindMoreAutomorphisms may have discovered that two given vertices are equivalent,
and put them in the same orbit of the global orbit partition, but this equivalence might come
from an automorphism that permutes all the other vertices in the graph. During the search for
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Algorithm 15 Look for more automorphisms.

FindMoreAutomorphisms(G,D,O, F ) : sequence of orbit partitions
1 - - let G = (V,R)
2 O′ ← O

3 SO← (O)
4 W ← F
5 while |O′| > 1 ∧ |W | < |V | do
6 Q← GenerateSequenceOfPartitions2 (G,DG,W )
7 - - let Q = (S,R,P), let S = (S0, ...,St)
8 - - let p be the pivot vertex used to generate partition S1 from partition S0
9 W ←W ∪ {p}

10 E← FindAutomorphisms(G,Q)
11 SO← SO+Orbits(E)
12 for each u, v ∈ V : Orb(u,Orbits(E)) = Orb(v,Orbits(E)) do
13 O′ ← merge(O′,Orb(u,O′),Orb(v,O′))
14 end for

15 W ′ ← {v ∈ V : ∃w ∈W : Orb(v,O′) = Orb(w,O′)}
16 W ←W ′

17 end while

18 return SO+ O′

Algorithm 16 Compute the orbit partition applicable at this point.

OrbitsApplicable(X, SO) : orbit partition
1 - - let SO = (O1, ...,On)
2 - - let V =

⋃

Oi∈On
Oi

3 if X = ∅ then
4 return On

5 else

6 O← {{v} : v ∈ V }
7 for each i ∈ {1, ..., n− 1} do
8 if ∀x ∈ X, |Orb(x,Oi)| = 1 then

9 for each u, v ∈ V : Orb(u,Oi) = Orb(v,Oi) do
10 O← merge(O,Orb(u,O),Orb(v,O))
11 end for

12 end if

13 end for

14 return O

15 end if

a compatible sequence of partitions, we make use of vertex equivalences among the vertices of
both graphs.

Consider the first graph. If all the vertices in a potential backtracking point yield compatible
sequences of partitions, then that backtracking point is eliminated because, if the other graph is
isomorphic to this one, then there is a sequence of partitions compatible with that for the first
graph, in which the vertices in the corresponding pivot cell must be equivalent. This comes from
the fact that isomorphisms preserve automorphisms, and was discussed in Section 6.1. This way,
even if we did not discover some vertex equivalence for the second graph, we know that it must
hold if both graphs are isomorphic, and make use of that fact to prune the search.

When it has not been possible to eliminate a backtracking point, that does not mean that there
is no automorphism that permutes some pair of vertices in the pivot set and fixes all the vertices
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Algorithm 17 Find a sequence of partitions compatible with the target (conauto-v2).

Match4 (l, G,H,QG, T , SO) : integer
1 - - let QG = (S,R,P), let S = (S0, ...,St), R = (R0, ..., Rt−1), P = (P 0, ..., P t−1)
2 - - let Sl = (Sl

1, ...S
l
rl
), V l =

⋃rl
j=1 S

l
j , for all l ∈ {0, ..., t}

3 - - let H = (VH , RH), let T = (T1, ...Trl),W =
⋃rl

j=1 Tj

4 if l = t then
5 if ∀x, y ∈ {1, ..., rl},ADeg(St

x, S
t
y, G) = ADeg(Tx, Ty, H) then

6 return t
7 end if

8 else

9 X ← TP l

10 if Rl = BACKTRACK then

11 O← OrbitsApplicable(VH \W, SO)
12 for each v ∈ X do

13 Valid(Orb(v,O))← TRUE
14 end for

15 repeat

16 v ← any vertex in X
17 X ← X \ {v}
18 if Valid(Orb(v,O)) then
19 T ′ ← VertexRefinement(T , v,HW )
20 - - let T ′ = (T ′

1, ..., T
′

r),W
′ =

⋃r

j=1 T
′

j

21 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

22 m← Match4 (l + 1, G,H,QG, T ′, SO)
23 if l 6= m then

24 return m
25 end if

26 end if

27 Valid(Orb(v,O))← FALSE
28 end if

29 until X = ∅
30 else

31 if Rl = VERTEX then

32 v ← any vertex in X
33 T ′ ← VertexRefinement(T , v,HW )
34 else (i.e. Rl = SET)
35 T ′ ← SetRefinement(T , X,HW )
36 end if

37 - - let T ′ = (T ′

1, ..., T
′

r),W
′ =

⋃r

j=1 T
′

j

38 if Sl+1 and T ′ are compatible under GV l+1 and HW ′ respectively then

39 m← Match4 (l + 1, G,H,QG, T ′, SO)
40 if l 6= m then

41 return m
42 end if

43 end if

44 end if

45 - - let X = {Sl
i : HasLinks(S

l
i, V

l, G)}, Y = {−1} ∪ {k < l : ∃Sl
i, S

l
j ∈ X : ∃Sk

x ∈ Sk : Sl
i, S

l
j ⊆ Sk

x}
46 return max k ∈ Y

discarded in the preceding levels. However, in this case, the equivalences discovered for the first
graph are not transferable to the second graph. At this point, the automorphisms of the second
graph are the only ones that may help. If we compute the whole automorphism group, we would
be able to determine, for each pair of vertices, if they are equivalent at some point. However,
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we have a limited knowledge of automorphisms. We only have a few (semi)orbit partitions, and
the best we can do is trying to combine that partial knowledge to do our best. That is what
Algorithm 16 tries to do. It combines all the available orbit partitions that fix all the vertices
previously discarded. This is clearly not optimal, but it is the best we can do with our limited
knowledge of automorphisms.

Algorithm 16 receives the set of vertices previously discarded, and operates in the following way:
it starts from the trivial orbit partition where each vertex belongs to a different orbit. Then, it
takes each orbit partition that fixes all those vertices, and returns the orbit partition obtained
after applying all the vertex equivalences established by those orbit partitions. This process
applies automorphism composition. Since, for now, we are applying this technique only in the
case that there are only two levels of backtracking (the first two levels in the sequence), this
algorithm will have a limited utility. However, it may be used in the future if more powerful
automorphism management is added to the algorithm.

8.1.5 Finding a Sequence of Partitions Compatible with the Target

Algorithm Match4 tries to find a sequence of partitions for graph H, that is compatible with
the target QG. It uses the sequence of orbit partitions SO to prune the search. This algorithm
differs from Match3 in the way it handles the levels of backtracking (lines 11 and 18). The rest
of the algorithm is identical to Match3 .

When Rl = BACKTRACK, Match4 uses Algorithm 16 (line 11) to compute the orbit partition
that is applicable at level l. This orbit partition is computed from SO and the vertices that have
already been fixed in the previous levels. Since the sequence of orbit partitions only has more
than one orbit partition when there are only 2 levels of backtracking, then at most one vertex
is fixed when the number of orbit partitions in SO is more than one.

Then, like Match3 , it marks all the orbits of the vertices in the pivot set as valid, and tries them
until it finds a sequence of partitions compatible with the target, or it has tested (or discarded)
all possibilities. Each time a vertex is discarded, its orbit is marked as not valid, so no more
vertices in its orbit are tested (since they would never yield a compatible sequence of partitions).

8.2 Performance Evaluation

Most of the results obtained for conauto-v2 are almost the same ones obtained for conauto-v0 and
conauto-v1. Nevertheless, they show that the complexity introduced in the more sophisticated
versions has, in general, low impact on the performance for the families of graphs that are not
the target of the added functionalities.

The results obtained for conauto-v2 are very similar to those obtained for conauto-v0 for ran-
domly connected graphs (see Figure 8.1, and compare it with Figure 6.5), and for 2D-meshes
(see Figure 8.2). Algorithm conauto-v2 is never the worst for these families of graphs, and, in
the case of undirected 2D-meshes, it is the best for the graphs of the biggest size.

With Miyazaki’s Fürer gadgets, conauto-v2 behaves uniformly for both positive and negative
tests (see Figures 8.3 and 8.4), and finds the undirected version harder than the directed one,
while nauty has better results for undirected graphs. This is a known problem of nauty. In

85



........
.........
..........
.............
..................

..................
......................

............................
............................

.................................
................................................

.........................................................
.......................................................................

.........................................................................

.............. .....
.........
..............
..............
..................

.....................
....... .............. .............. .................... .............. .............. ................... .............. .............. ................... .............. .............. .....

..................
..................
..................
..................
..................

..................

..................
..................

..................
..................

..................

. .
.

.
.
.
.

.
..

. . . .. . . . .. . . . .. . . . .

....... .........

....... .........

....... .........
....... .........
....... .........

....... .........

....... .........

....... .........
....... .........

....... .........

....... .........

.......
.........
...........
............
..................

...................
.........................

...............................
...............................

.............................................
....................................................

..........................................................................
..........................................................................................

..........

.............. .....
.........
..............
..............
..................

..................
.......... .............. .............. .................... .............. .............. ................... .............. .............. ................... .............. .............. .....

..................
..................
..................
..................
..................

..................

..................
..................

..................
..................

..................

. .

.

.
.
.
.

.
..

. . . .. . . . .. . . . .. . . . .

....... .........

....... .........
....... .........
....... .........
....... .........

....... .........

....... .........

....... .........
....... .........

....... .........

....... .........

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

0 200 400 600 800 1000
Size [Vertices]

Directed randomly connected graphs: η = 0.1

conauto-v2
nauty-2.2

vf2

A
v
e
ra

g
e
T
im

e
[S

e
c
o
n
d
s]

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

0 200 400 600 800 1000
Size [Vertices]

Undirected randomly connected graphs: η = 0.1

conauto-v2
nauty-2.2

vf2

A
v
e
ra

g
e
T
im

e
[S

e
c
o
n
d
s]

Figure 8.1: Performance of conauto-v2 with isomorphic randomly connected graphs.
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Figure 8.2: Performance of conauto-v2 with isomorphic 2D-meshes.

fact, nauty is unable to process, within our time-limit, the directed graphs of this family with
40 vertices.
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Figure 8.3: Performance of conauto-v2 with isomorphic Miyazaki’s Fürer gadgets.

The results for most of the sub-families of strongly regular graphs (Paley, triangular, and lattice
graphs), shown in Figures 8.5 and 8.6 are like the ones for conauto-v0. For these families of
graphs, conauto-v2 and nauty have similar results, while vf2 finds triangular and lattice graphs
much easier than Paley graphs.

Latin square graphs were the aim of the improvement introduced in conauto-v2. The low
performance of conauto-v0 and conauto-v1 with respect to nauty was due to the fact that the
former algorithms do not manage automorphisms in a sophisticated way, but quite simply. These
algorithms are unable to eliminate all the backtracking points, and the equivalences found among
vertices are not always useful. However, algorithm conauto-v2 benefits from its further search
for automorphisms. Thus, it is able to eliminate the backtracking point at level 0, discovering
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Figure 8.4: Performance of conauto-v2 with non-isomorphic Miyazaki’s Fürer gadgets.
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Figure 8.5: Performance of conauto-v2 with Paley graphs.
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Figure 8.6: Performance of conauto-v2 with triangular and lattice graphs.

the vertex transitivity of Latin square graphs, improving the performance, as it can be seen
in Figure 8.7. Although conauto-v2 is still slower than nauty, there is less than one order of
magnitude of difference, what is an improvement of three orders of magnitude compared with
sinauto. Since the performance for positive and negative tests is the same, it is not likely to be
easily improved without a thorough revision of the algorithm.

The results for the family of tripartite graphs are shown in Figures 8.8 and 8.9. Algorithm
conauto-v2 runs a bit faster than its previous version conauto-v1 (coauto-v1 generates sequences
of partitions for both graphs before calling algorithm Match4 while conauto-v2 only generates
one of them), and has very similar results for positive and negative tests, and also very similar
for the directed and the undirected versions of the graphs. It is important to note that nauty
is unable to give an answer within the time-limit of 10000 seconds for directed graphs with 52
vertices, and for undirected graphs with more than 200 vertices.
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Figure 8.7: Performance of conauto-v2 with Latin square graphs.
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Figure 8.8: Performance of conauto-v2 with isomorphic unions of tripartite graphs.
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Figure 8.9: Performance of conauto-v2 with non-isomorphic unions of tripartite graphs.

Figure 8.10 shows the results for the unions of small strongly regular graphs. Comparing these
with those of Figure 7.7, conauto-v2 shows an improvement with respect to conauto-v1. As in
the case of unions of tripartite graphs, this is due to the fact that coauto-v1 generates sequences
of partitions for both graphs before calling algorithm Match4 while conauto-v2 only generates
one of them.

The point-line graphs of Desarguesian projective planes have proved to be resistant to all our
efforts. It has been impossible to improve the results obtained with conauto-v0. Our only relief
is that although our algorithm is slower than both nauty and vf2 (for this family of graphs),
their behavior is only slightly better than that of conauto-v2. They are able to give an answer
for the graphs of 182 vertices, while conauto-v2 stops at 146 vertices. None of them seems to
work in polynomial time for this family of graphs. In a trace of algorithm conauto-v2, we have
observed that the number of paths explored in the search process is asymptotically similar to of
Miller’s O(nlog logn+O(1)) bound for the isomorphism of projective planes [52]. Nevertheless, this
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Figure 8.10: Performance of conauto-v2 with unions of strongly regular graphs.

is not necessarily a lower bound, so some heuristic or invariant might help improve the results
in the future.
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Figure 8.11: Performance of conauto-v2 with point-line graphs of Desarguesian projective planes.

Our algorithm has proved, in practice, to be efficient for a wide variety of families of graphs,
even for families of graphs that are known to be hard for nauty (the reference package for
graph isomorphism testing), such as Miyazaki’s Fürer gadgets, and unions of regular graphs (in
particular strongly regular graphs). The fact that vf2 runs for Desarguesian projective planes
as fast as nauty makes us think that maybe it is possible to improve the performance of conauto
for these graphs just by adding some new heuristic to the algorithm.
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Chapter 9

Complexity Analysis

In this section, we study time and space complexity of our algorithm conauto-v2. First we focus
on space complexity. Then, we prove that, with high probability, our algorithm takes polynomial
time for random graphs G ∈ G(n, p).

9.1 Space Complexity

This section is devoted to studying the space complexity of algorithm conauto-v2. It will be
shown that this space complexity is limited to O(n2), where n is the number of vertices of the
graph. We assume words of O(logn) bits, since they need to store vertex identifiers. Among
the data structures used by conauto-v2, they are the ones necessary to represent the adjacency
matrices of the graphs being tested, which needs O(n2) words for a graph of n vertices.

Each partition may be represented using O(n) words. The space needed for a sequence of
partitions depends on the number of partitions in the sequence. At each step in the refinement
procedure, a vertex or a set refinement is performed. That means that, at least one vertex is
discarded (in the case of a vertex refinement), or at least one new cell is generated (in the case
of a set refinement). Since the refinement process stops when there are no remaining vertices
(in fact when there are no remaining vertices with links, because they would be discarded in
the next step) or when all the cells in the partition are singleton, then in at most 2n− 1 steps,
the stop condition is reached. Note that if there are two vertices, in one set refinement both
vertices would be in singleton cells, and in one vertex refinement, only one vertex would be left,
so one refinement step is enough. Hence, a sequence of partitions has at most 2n partitions,
what requires O(n2) words.

Each orbit partition may be represented using O(n) words, so a sequence of orbit partitions
needs at most O(n2) words. In fact, since a sequence of orbit partitions is computed only for
graphs for which the original sequence of partitions has only one backtracking point remaining,
only a few orbit partitions will be generated. In this process, also sequences of partitions are
generated, but since they are discarded after being used, it is only necessary to store in memory
one extra sequence at a time. Hence, the space needed to store the orbit partitions is also
limited to O(n2) words. This yields a total amount of space required by our algorithm to be
O(n2) words, or O(n2 log n) bits.
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9.2 Time Complexity

9.2.1 Generation of a Sequence of Partitions

Concerning time complexity, we first consider the two basic operations used in the process of
partition refinement: vertex and set refinements. A vertex refinement requires testing a row or
column of the adjacency matrix of the graph. That needs O(n) time. Then the vertices in each
cell must be classified in at most 4 different subcells, what may be done also in O(n) steps using
counting sort [18, pp. 168–170]. Thus, a vertex refinement may be done in O(n) time. In a set
refinement, all the vertices in the partition need to be tested with all the vertices in the pivot
cell. In the worst case there would be only one cell in the partition, what requires comparing
each vertex with all the others, clearly O(n2) comparisons.

The generation of a sequence of partitions starts with the degree partition of the graph. That
means going through the whole adjacency matrix, what requires O(n2) operations, and ordering
the vertices according to their degree, what may be done using merge sort [18, pp. 29–35] in
Θ(n logn) steps. Next, in the main loop of Algorithm 14 (GenerateSequenceOfPartitions2 , lines
8–37) there are two different possibilities for each iteration. Let us analyze the time-complexity
of each one:

1. If |Sl
P l | = 1, i.e., the chosen pivot set has size 1, then a vertex refinement is performed, so

this case has O(n) cost.

2. Otherwise, set refinements are tried until one succeeds, or every possibility has been tried.
In case there is only one cell in the partition, the cost of the unique set refinement in the
loop would be in the worst case O(n2). In case there are various valid cells to be tried, let
S l = (Sl

1, ..., S
l
rl
) be the partition to be refined and let V l =

⋃rl
j=1 S

l
j . The cost of trying

cell Sl
i, i ∈ {1, ..., rl} is O(|Sl

i||V l|), and the cost of trying all the cells in the partition,
∑rl

i=1O(|Sl
i||V l|). Since ∑rl

i=1 |Sl
i| = |V l|, then the cost would be O(|V l|2). Hence, for the

general case we can state that the cost of the while loop (lines 15–24) is in the worst case
O(n2). If that fails, a vertex refinement takes place, but that has only a cost of O(n), so
the cost of this execution path remains O(n2).

If each vertex in the graph has a different degree, then the sequence of partitions has only one
partition. In this case, the cost of generating its sequence of partitions would be O(n2) (the
main loop of Algorithm 14 has no iteration). Otherwise, we know (Section 9.1) that the number
of refinement steps in a sequence of partitions is O(n). Thus, if the sequence of partitions only
involves vertex refinements (Case 1 above), the generation of the sequence of partitions would
require O(n2) operations. If set refinements are needed at some step in the generation of the
sequence of partitions, then the generation of a complete sequence of partitions may need O(n3)
steps. If a sequence of partitions has backtracking points, then for sure it has involved at least
one set refinement, that that was performed unsuccessfully on the pivot cell subsequently used
for the vertex refinement at the backtracking point. Hence, the total time required to generate
a sequence of partitions (execution of Algorithm 14) is O(n3), and may be as low as O(n2) in
some cases.
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9.2.2 Finding a Match

The time complexity of Algorithm 17 (Match4 ) is harder to bound. Since it is a backtracking
procedure, its cost depends greatly on its input. The number of backtracking points conditions
the time complexity, and the number of backtracking points is determined by the structure of
the graphs. However, it is easy to estimate the time complexity of the algorithm in the case
that there are no backtracking points. In this case, the algorithm tries to generate a sequence
of partitions compatible with the original one in a straightforward fashion. Hence, the time
complexity of generating this new sequence of partitions is the same needed to generate the first
one: O(n2) or O(n3) depending on the necessity to perform set refinements or not (cases 1 and
2 above).

Let α be the number of backtracking points. Then the time complexity is O(nα+3). In case a
family of graphs yields always sequences of partitions with a (bounded by a constant) number
α of backtracking points, the cost of the algorithm would remain polynomial, though the ex-
ponent increases according to the number of existing backtracking points α. If the number of
backtracking points depends on the size of the graph, then the time-complexity of the algorithm
becomes superpolynomial. That seems to be the case of, for example, the point-line graphs of
Desarguesian projective planes.

9.2.3 Time Complexity for Undirected Graphs

Several authors have investigated the isomorphism of random graphs [5, 10, 22]. Their approach
is to describe an algorithm, usually very simple, for the graph isomorphism problem, that works
for a certain family of graphs. Then, they show that the probability of a random graph belonging
to that family tends to 1 when the number of vertices of the graph tends to infinite.

In [5], the algorithm proposed works in O(n2) and computes a canonical labeling of a graph,
provided that it belongs to a family of graphs K . The authors also prove that the probability
that a random graph G(n, 1/2) on n vertices belongs to this family is greater than 1 − 7

√

1/n
for sufficiently large n. Their algorithm works as follows for a graph G on n vertices:

1. Compute r = [3 logn/ log 2].

2. Compute the degree of each vertex of the graph.

3. Order the vertices by degree; call them v(1), ..., v(n). Denote by d(i) the degree of v(i).

4. If d(i) = d(i+ 1) for some i ∈ {1, ..., r − 1}, then G /∈ K , FAIL.

5. Let a(i, j) = 1 if v(i) and v(j) are adjacent, and a(i, j) = 0 otherwise. Then, compute
f(v(i)) =

∑r
j=1 a(i, j)2

j for each i ∈ {r + 1, ..., n}.
6. Order the vertices v(r+1), ..., v(n) according to their f -value; call them w(r+1), ..., w(n).

7. If f(w(i)) = f(w(i+ 1)) for some i ∈ {r + 1, ..., n}, then G /∈ K , FAIL.

8. Label v(i) by i for i ∈ {1, ..., r}, and w(j) by j for j ∈ {r + 1, ..., n}. This labeling will be
canonical, and G ∈ K . END.

Here, a graph G belongs to K if its r vertices of highest degree may be distinguished by their
degree, and the other vertices of the graph may be distinguished by their adjacencies with the
r vertices of higher degree. In our algorithm, this is analogous to the case when the degree
partition is able to distinguish at least a set Z of r vertices (put them in singleton cells), and
then, applying successive vertex refinements using these as pivot vertices, all the other vertices
are distinguished. In this case, our algorithm also generates the sequence of partitions in O(n2)
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time, and is not restricted to have in Z the r vertices of higher degree. Hence, our algorithm
works in O(n2) time for more graphs than the one proposed in [5]. Note as well that the authors
of [5] only consider undirected graphs. Consequently, the probability that our algorithm works
in O(n2) time is at least the same of their algorithm for undirected graphs in G(n, 1/2).

The algorithm proposed by Czajka and Pandurangan [22] covers a wider family of random
graphs. It works with high probability for random graphs G(n, p) for p ∈ [ω(ln4 n/n ln lnn), 1−
ω(ln4 n/n ln lnn)]. Like the algorithm of [5], this algorithm provides a canonical labeling for all
graphs in a given family. The algorithm is based on the degree neighborhood of the vertices,
which is a sorted list of the degrees of the vertex¿s neighbors. It works as follows:

1. Compute vertex degrees.

2. Compute the degree neighborhood for each vertex.

3. Sort the vertices by degree neighborhood in lexicographic order.

4. If the degree neighborhoods are not distinct for each vertex, FAIL.

5. Label the vertices in the sorted order.

If this algorithm does not fail, it computes a canonical labeling of the graph. The authors show
that it can be computed in O(|V |+ |E|) (V is the vertex set and E the edge set). This algorithm
does not have a trivial correspondence with the way Algorithm 14 computes a sequence of
partitions for a graph. However, the classification performed by this algorithm is equivalent
to a refinement where each vertex is classified according to the number of adjacent vertices it
has of each degree. This may be accomplished starting from the degree partition, and then
performing successive set refinements using a different cell in the original partition as the pivot
set for each refinement. Since our algorithm keeps applying refinements until it finds a partition
with singleton cells, or with no remaining links, it will be able to find a sequence of partitions
without backtracking points for at least as many graphs as this algorithm. Our algorithm’s time
complexity will be O(n3) in this case, since we can not fix the number of set refinements needed.

Recall that our algorithm generates a sequence of partitions for each of the graphs considered,
and then keeps the one with fewer backtracking points. The above argument shows that if a
graph is labeled with the algorithm of [22], then its sequence of partitions has no backtracking
points. Hence, we can apply the analysis in [22], and conclude that, with high probability,
our algorithm has time complexity O(n3) if the graphs to be compared are undirected random
graphs G(n, p) for p ∈ [ω(ln4 n/n ln lnn), 1− ω(ln4 n/n ln lnn)].
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Chapter 10

Conclusions and Further

Improvements

In this chapter, we summarize our conclusions and propose some extensions to our algorithm
that may help improving its performance in some cases.

10.1 Conclusions

We have developed an algorithm for graph isomorphism testing that meets the requirement
to be fast in practice. We have compared its practical performance with the world’s most
acknowledged package for graph isomorphism testing, Brendan McKay’s nauty. Our algorithm
has outperformed it for a number of graph families, what shows that our new approach to the
problem, not trying to compute the whole automorphism group of the graphs may be better, at
least in some cases.

Since it is known that computing the automorphism group of a graph is harder than isomorphism
testing, our approach may open a new research line that may yield even better results in future,
finding a way to deal with the most hard cases, such as the point line graphs of Desarguesian
projective planes.

We have also shown that our algorithm requires a limited amount of memory, O(n2), what is
a satisfactory bound. We have also shown that it has polynomial time complexity with high
probability (for random graphs), with a best case of O(n2) time complexity.

An early version of conauto has been recoded and included in the LEDA C++ class library
of algorithms [65], commercialized by Algorithmic Solutions Software GmbH. As noted in [65],
both implementations of conauto have a very uniform behavior. It is also worth noting that the
LEDA implementation was found to be slower than ours.

10.2 Future extensions

One line to explore is the use of more sophisticated automorphism management. This should
consider automorphisms that are known to exist but have not been considered in the latest
version of the algorithm. (For instance, in Chapter 7 automorphic relations were identified
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under certain conditions; but have not been stored nor used further.) Hence, something like the
tools presented in [40, Chapter 6] should be added to the algorithm to store and operate with
automorphisms, and what is more interesting, to determine which automorphisms are applicable
at some step during the search for a matching.

In Chapter 8, the search for automorphisms was extended in the case the only backtracking
points in the original sequence were the first two ones. Adding tools to manage automorphisms
efficiently would allow a further extension of this search for automorphisms, what might improve
the performance in some other cases apart from the Latin square graphs targeted there.

Another way to improve the performance of the algorithm would be to add new refinement
techniques, i.e. new invariants that might help eliminate some backtracking points. The problem
with this approach is that the new invariants should be fast to implement, and we would like the
algorithm to decide when a certain invariant is useful without the intervention of the user. (This
would be unlike the case of nauty, where many invariants may be used at the user’s request to
speed up the algorithm.)

One idea is to try additional new refinement techniques when we find that there are no valid
cells, and a backtracking point would arise. Some possibilities we may consider are the following:

• Refine using the combination of two pivot cells. Consider the pivot cells Pi and Pj . For
each vertex v in a cell S, we count the number of vertices in Pi that are accessible from
v using the different paths of length 2 that go through cell Pj . In this case, we need to
find some heuristics that help discarding pairs of pivot cells to avoid trying pairs of cells
that we could determine in advance that are useless. Otherwise, the cost of this invariant
might make it inefficient.

• Sometimes, a vertex refinement followed by one or more set refinements might help differ-
entiate among the vertices in a cell. The process consists of choosing a cell to be refined.
Then, for each vertex in this cell, a vertex refinement followed by as many set refinements
as possible are performed. Finally, the vertices are classified according to the structure
of the final partition obtained, and the refinement process followed. A simplified version
would be to perform only one set refinement after the vertex refinement.

An idea that we have not exploited yet is acquiring knowledge of non-automorphisms, in addition
to automorphisms. During the search for automorphisms, when at some backtracking point not
all the vertices in the pivot cell are equivalent, we keep that backtracking point, and probably,
not all the vertex equivalences discovered will be applicable, due to the partial information of
automorphisms managed by the algorithm. One thing that could help is keeping knowledge of
how many vertices in the pivot cell have been found to be equivalent. If there are n vertices
in the pivot cell, and k of them are equivalent to the pivot vertex, since isomorphisms preserve
automorphisms, in the search for a sequence of partitions compatible with the target, it would
be necessary to try at most n− k vertices prior to discarding this path in the search space. The
cost for the algorithm is just counting the successful vertices at each backtracking point, which
is very little.

Something a bit more sophisticated would be to take note of the level at which an incompatibility
has been found during the tests for equivalence among the vertices in the pivot cells, and, at
once, take note also of the exact point and cause of the discrepancy among the sequences of
partitions. Perhaps, several vertices in the pivot cell may have the same discrepancy, but maybe
also there can be several types of discrepancies, so counting all of them, it might be faster to
find that the incompatibility found during the search for a sequence of partitions compatible
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with the target is not among the possible discrepancies, or that the amount of vertices for a
given discrepancy might be exceeded.

In Section 9.2.3, it was shown that our algorithm finishes in polynomial time with high prob-
ability for randomly chosen undirected graphs. A more thorough study is left for future work.
Among the lines to follow, one would explore a similar result for directed graphs. A second
line would try to bound the expected time complexity for random graphs. To do so, we could
attempt to bound the amount of graphs for which the algorithm works in superpolynomial time,
and to bound the worst-case complexity for these graphs.
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Resumen en Castellano

Antecedentes

El problema de, dados dos grafos, determinar si son isomorfos o no, ha sido estudiado durante
décadas por cient́ıficos de diversos ámbitos, tanto por su considerable campo de aplicación
práctica, como por su propio interés desde el punto de vista teórico.

El isomorfismo de grafos se ha usado para reconocimiento de formas en visión artificial, para
mineŕıa de datos, o en qúımica matemática, para obtener identificadores únicos de los compuestos
qúımicos, algo imprescindible en catalogación. La obtención de un identificador canónico para
un compuesto (o más genéricamente para un grafo) es un problema directamente derivado del
de calcular el grupo de automorfismo de un grafo, y habitualmente se ha utilizado también para
determinar el isomorfismo. Sin embargo, calcular el grupo de automorfismo de una pareja de
grafos puede ser más dif́ıcil que comprobar si son isomorfos.

Desde el punto de vista de complejidad algoŕıtmica, también es un problema interesante, por el
hecho de que su complejidad no está clara. Aunque está claro que está en NP, no se sabe si es
NP-completo. Además, hay muchos indicios que hacen sospechar que no es un problema NP-
completo. Por ejemplo, contar el número de isomorfismos de un grafo tiene aproximadamente
la misma complejidad que determinar la existencia de un isomorfismo. Sin embargo, la contabi-
lización tiende a ser mucho más compleja que la decisión en todos los problemas NP-completos.
De hecho, la complejidad exacta del problema es, aun hoy, un problema abierto.

A pesar de todo esto, se conocen muchos casos de familias de grafos para las que existe una
solución del problema en tiempo polinómico. Por ejemplo, en el caso de que el grado de los
vértices esté acotado. Todo esto ha hecho que muchos investigadores hayan buscado algoritmos
eficientes para resolver el problema usando diversos enfoques.

Una posibilidad es tratar de buscar directamente un isomorfismo, utilizando un algoritmo de
búsqueda clásico, y podando ramas mediante heuŕısticos y el uso de invariantes. Esta opción
suele ser buena en el caso de que el grafo tenga muy pocos automorfismos, y en el caso de que
los grafos evaluados sean isomorfos. Sin embargo, si los grafos no son isomorfos y tienen muchos
automorfismos, el algoritmo puede recorrer muchas ramas automorfas del árbol de búsqueda
antes de descubrir que no hay solución posible. Este es el caso del algoritmo vf2.

Otra posibilidad es encontrar un etiquetado canónico de cada grafo, y a continuación comparar
directamente los etiquetados canónicos. Esto supone determinar el grupo de automorfismo
de los grafos, lo que, como se ha comentado anteriormente, puede ser más complejo de lo
estrictamente necesario. Sin embargo, da muy buenos resultados cuando los grafos tienen muchos
automorfismos. El ejemplo por excelencia de este tipo de algoritmos es nauty.
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Objetivos

El objetivo de esta tesis es proponer un algoritmo novedoso para resolver el problema del iso-
morfismo de grafos, que sea eficiente (tiempo polinómico) en la mayoŕıa de los casos, y que sea
completo, es decir que dé una respuesta positiva o negativa en todos los casos (hay algoritmos
que son muy rápidos pero no son completos). Además de la eficiencia teórica de nuestro algo-
ritmo, también nos interesa especialmente la eficiencia práctica. Para ello, se ha programado el
algoritmo en C, y se ha comparado su tiempo de ejecución con los de vf2 y nauty para diversas
familias de grafos.

Además, otro requisito impuesto a nuestro algoritmo es que la cantidad de memoria requerida
sea O(n2) donde n es el número de vértices del grafo. Este requisito es necesario para poder
manejar grafos de gran tamaño. Téngase en cuenta que en el caso de O(n3), para grafos de miles
de vértices, haŕıan falta gigabits de memoria. Dado que la matriz de adyacencia de un grafo ya
requiere O(n2) bits, no es posible reducir la cmplejidad asintótica por debajo de este valor.

Finalmente, nuestro algoritmo debe suponer una mejora frente a los algoritmos existentes. Esto
es, en el caso de familias de grafos para las que los algoritmos existentes tienen una complejidad
temporal aparentemente polinómica, el nuestro debeŕıa tener un comportamiento similar, y
además, debeŕıa mejorar los resultados para algunas familias de grafos con las que los algoritmos
actuales tienen un comportamiento exponencial. Además, queremos que nuestro algoritmo tenga
un comportamiento lo más uniforme posible para grafos con caracteŕısticas similares.

Bateŕıa de Pruebas

Con el fin de comparar la eficiencia práctica de nuestro algoritmo con otros existentes, hemos
generado una bateŕıa de pruebas con familias de grafos de caracteŕısticas diversas:

• Grafos aleatorios. Los grafos aleatorios son un ejemplo clásico de grafos, y además son
los grafos más frecuentes, por lo que parece impensable una bateŕıa de prueba sin contar
con ellos. Cualquier algoritmo para determinar el isomorfismo de grafos debe ser rápido
con esta familia de grafos, si pretende tener utilidad práctica.

• Mallas. Hay un tipo especial de mallas regulares dirigidas que resultaban especialmente
duras para la versión 2.0 del algoritmo nauty, mientras que el algoritmo vf2 era muy rápido
con ellas. Sin embargo, nauty era más rápido que vf2 con la versión no dirigida de esos
grafos. La versión 2.2 de nauty mejoró considerablemente su rendimiento con la versión
dirigida, pero aún era más de un orden de magnitud más lento que con la versión no
dirigida. Nosotros persegúıamos un algoritmo que tuviera un comportamiento similar con
independencia de que los grafos fueran dirigidos o no.

• Grafos de Miyazaki. Basándose en una construcción de Martin Fürer, Miyazaki cons-
truyó una familia de grafos que, aún teniendo grado constante, haćıa que nauty tuviera un
comportamiento exponencial, incluso usando invariantes adicionales. Esto parećıa deberse
a la forma en la que nauty detectaba los automorfismos. Nosotros pretend́ıamos evitar
este problema usando una técnica diferente para la búsqueda de automorfismos.

• Grafos fuertemente regulares. Los grafos fuertemente regulares son muy regulares,
pero no necesariamente tienen un grupo de automorfismo muy grande. Esto puede hacer
que algunos sean muy fáciles de procesar, mientras que otros resulten mucho más dif́ıciles,
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sobre todo en el caso de que los grafos a procesar no sean isomorfos y el algoritmo no se
base en etiquetados canónicos.

• Grafos unión. Hemos considerado grafos unión en los que cada componente tiene sus
vértices conectados con todos los vértices de todas las demás componentes del grafo, en
lugar de hacer la unión disjunta. De este tipo, hemos considerado dos familias. Grafos
unión de grafos fuertemente regulares de pequeño tamaño, y grafos unión de grafos tri-
partitos, de pequeño tamaño también, diseñados por nosotros mismos. Es conocido por el
propio McKay que nauty es exponencial para este tipo de construcciones.

• Planos proyectivos. Se han considerado los grafos de incidencia punto-recta de los planos
proyectivos finitos desarguesianos. Es conocido que este tipo de grafos es de los más duros
para el isomorfismo.

Algoritmos

Para desarrollar nuestro algoritmo, hemos partido de un algoritmo relativamente sencillo, que
aplica las ideas principales de nuestra tesis, y lo hemos ido enriqueciendo progresivamente.
Nuestras ĺıneas maestras son las siguientes:

• En lugar de considerar la matriz de adyacencias clásicaM en la que un arco desde el vértice
i hasta el vértice j se representa mediante un 1 en la posición Mij , hemos usado una matriz
con 4 valores posibles: 0, 1, 2, 3, de forma que 0 indica que i y j no son adyacentes, 1 indica
que hay un arco que va de j a i, 2 indica que hay un arco que va de i a j, y 3 que hay
un arco en cada sentido o una arista en un grafo no dirigido. Esto permite simplificar el
procesado de grafos dirigidos.

• Usamos clasificación de vértices para construir particiones que faciliten la construcción de
un isomorfismo entre los dos grafos. Se comienza con la partición trivial, en la que todos
los vértices están en el mismo conjunto, y se van reclasificando los vértices de acuerdo
el número de vértices de cada tipo que tienen respecto de un conjunto de la partición,
denominado conjunto pivote. El proceso termina cuando todas las celdas de la partición
tienen un único vértice. Si en algún momento no es posible dividir ninguna celda, se realiza
una individualización, esto es, se elige una celda y de ella se extrae un vértice que se sitúa
en una nueva celda, y se sigue intentando refinar la partición con esas dos nuevas celdas.

• La secuencia de particiones obtenida para un grafo, junto con los pivotes usados en cada
refinamiento, identifican uńıvocamente al grafo. Una vez obtenida la secuencia de parti-
ciones para uno de los grafos, se intenta generar una secuencia de particiones para el otro
grafo, que sea compatible con la del primer grafo. Si no se han realizado individualizaciones
de vértices, la generación será directa (en caso de que sea posible). El problema radica en
que si ha habido individualizaciones de vértices, entonces para el segundo grafo habrá que
probar, en principio, individualizando todos los vértices del grupo pivote correspondiente,
para encontrar aquel que corresponde con el usado para el primer grafo. Esto requiere un
algoritmo de vuelta atrás, que puede tener un coste exponencial.

Al algoritmo básico se le han añadido nuevas funcionalidades que le permiten detectar automor-
fismos en los grafos (aunque no necesariamente todos), y usar estos automorfismos para podar
drásticamente el árbol de búsqueda. Además, es capaz de detectar componentes en los grafos,
y aislarlas de forma que su comportamiento mejora considerablemente con grafos unión.
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Lo más importante de las sucesivas mejoras que se van introduciendo es que se hacen sin oca-
sionar una merma sustancial del rendimiento para los casos en los que el algoritmo anterior ya
teńıa un buen comportamiento. Cada nueva versión que se genera se compara con los otros
algoritmos mediante la bateŕıa de pruebas, para comprobar que se va consiguiendo el objetivo
perseguido.

Para terminar, se realiza un pequeño análisis de complejidad, tanto espacial como temporal, del
algoritmo final.

Conclusiones

Hemos desarrollado un algoritmo para el isomorfismo de grafos que cumple el requisito de ser
rápido en la práctica. Hemos comparado su rendimiento, mediante una bateŕıa de pruebas, con
el algoritmo más reconocido internacionalmente, el nauty de Brendan McKay. Nuestro algoritmo
ha mejorado sustancialmente sus tiempos para varias familias de grafos, lo que demuestra que
nuestro enfoque del problema, sin intentar obtener el grupo de automorfismo completo de los
grafos, puede ser una opción mejor, al menos en algunos casos.

Puesto que es sabido que calcular el grupo de automorfismo de un grafo puede ser más duro
que el isomorfismo, nuestro enfoque puede abrir una nueva ĺınea de investigación que puede dar
mejores resultados en el futuro, encontrando un modo de tratar los casos más duros, como el de
los grafos de adyacencia punto-recta de los planos proyectivos finitos desarguesianos.

Hemos demostrado que nuestro algoritmo tiene una complejidad espacial O(n2) donde n es el
número de vértices de los grafos, con lo que se ha alcanzado el objetivo en cuanto al uso de
memoria.

Demostramos también que nuestro algoritmo tiene una complejidad temporal, en el caso mejor,
O(n2), es decir, cuadrático en el número de vértices del grafo. También demostramos que con alta
probabilidad, nuestro algoritmo tiene una complejidad temporal O(n3) si consideramos grafos
aleatorios G(n, p) no dirigidos, para valores de p ∈ [ω(ln4 n/n ln lnn), 1− ω(ln4 n/n ln lnn)].

Una versión antigua de conauto fue recodificada e incluida en la biblioteca de clases C++ LEDA
[65], comercializada por Algorithmic Solutions Software GmbH. Como se menciona en [65], tanto
nuestra versión de conauto como la suya tienen un comportamiento muy uniforme. Además,
debemos destacar que su versión es aproximadamente la mitad de rápida que la nuestra. Sin
embargo, su recodificación del algoritmo vf2 es unas cuatro veces más rápida que la original.
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