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Abstract1 
In this paper, the implementation of a digital signal processor (DSP) based multi-format decoder 
for an IP set-top box is described. Using several software optimization techniques, the 
multi-format decoder has been fitted into a TMS320DM641 DSP @ 480 Mhz. Starting from a 
native C code implementation, a six-step software optimization process has been applied to 
improve the decoder performance. Currently, 30% and 54% of the DSP capacity is used for 
MPEG-2 MP@ML and MPEG-4 ASP@L5 decoding, respectively. As a result, the cost of the 
whole system is lowered since the DSP has enough room left to run other IP set-top box tasks such 
as transport stream parsing, audio decoding, audio and video presentation and a user interface. 
Nowadays, our middle term goal is to fit other video decoders (H.264 and HD MPEG-2), other 
audio decoders (AC3 and AAC), a Real Time Operating System (RTOS) and a complete user 
interface in the DSP. 

1. Introduction. 
Set-top boxes (STBs) are becoming key devices in home entertainment networks, not only to 
receive digital television (DTV), but also as residential gateways to deliver multiple services 
as well [1]. To gain in flexibility and modularity in home networks, the functionality of STBs 
may be distributed between a main device and several peripherals, all interconnected by an 
Ethernet network. As can be seen in Figure 1, the main device works as a gateway between 
cable, terrestrial or satellite DTV distribution systems and the home network. The peripheral 
devices are IP DTV decoders. Since a user may have one of these decoders placed close to 
each TV set, they are also called IP STBs [2]. 
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Figure 1. TV distribution in home networks. 
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Ministerio de Ciencia y Tecnología (MCYT) of the Spanish Government. 



  

As a consumer electronics device, an IP STB must be cheap and versatile. The high 
computational costs of video decoder implementations constraints STB designs. 
Non-programmable decoders [3] cannot cope with the quick evolution of audio and video 
decoding algorithms. In addition, the latest generation of digital signal processors (DSPs) [4-6] 
can support inexpensive and flexible decoders. As a consequence, much effort has been done 
in the design of DSP-based video decoders in the last years [7-13]. Our short term goal is to 
develop an IP-STB with audio and video multi-format decoders. Unlike the work done in [13], 
our approach lowers system costs by taking advantage of the DSP capacity left to implement 
the rest of STB functions. 

In this paper, the design and optimization of a multi-format video decoder based on a 
TMS320DM641 DSP @ 480 MHz is described. Performance results are given for SD 
MPEG-2 decoding while preliminary results are outlined for MPEG-4 ASP decoding. The 
optimization achieved in the video decoder has allowed the design of an IP STB whose main 
tasks have been implemented within a single DSP.  

The rest of the paper is organized as follows. In section 2, the IP STB architecture (hardware 
and software) is explained for reference. In section 3, the video decoder software optimization 
process is described. In section 4, profiling results for all functional blocks in the MPEG-2 
decoding process are outlined. In section 5, a testbench to analyze the IP-STB real-time 
performance is presented. In section 6, preliminary results for MPEG-4 ASP decoding are 
shown. Finally, section 7 is devoted to conclusions and future work. 

2. IP STB Architecture. 
The IP STB hardware architecture [14] can be seen in Figure 2. The TMS320DM641 DSP 
interfaces with an Ethernet port, two external memories, a video encoder, a digital to analog 
audio converter, an infrared receiver and a JTAG emulator using a minimum amount of glue 
hardware. 
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Figure 2. Board (a) and block diagram (b) of the IP STB. 
 

To implement all IP STB tasks, the system is embedded into a multi-task software 
architecture that has been built using the RF5 [15] (see Figure 3). A real-time kernel [16] 
schedules the tasks execution and allows inter-tasks communication using queues and 
mailboxes. The system is composed of six tasks: transport stream demultiplexing, audio and 
video decoding, audio and video presentation and user application. The video decoder is 
integrated in the video decoding task. This task reads one frame from a transport task output 
buffer, decodes it, and stores the result in an image buffer. The video algorithm has been 
designed to be eXpress-DSP Compliant [17]. 
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Figure 3. Software architecture (see notation details in [15]). 

3. MPEG-2 video decoder optimization. 
The first version of the video decoder was developed in native C code implementing only the 
MPEG-2 algorithm. Initially, the code was located entirely in external memory and spent 
about 2.000 million clock cycles per frame to decode MPEG-2 MP@ML streams. 

The optimization process was developed in six steps: 

1. First step: memory management optimization. After several iterations, the 128 kB 
L2 memory was configured as a 32 kB 2nd level cache and a 96 kB SDRAM internal 
memory. All decoder functions were fitted in the latter. With these changes, an 
improvement of about 95% over the initial version was achieved. 

2. Second step: function optimization. Optimized functions taken from the DSP vendor 
were adapted to implement several functional blocks (variable length decoding, 
inverse quantization and inverse discrete cosine transform). As a consequence, an 
improvement of 50% above the previous results was achieved. 

3. Third step: assembly coding. The execution was optimized by increasing the 
parallelism in critical parts of the algorithm. These parts were re-encoded in the DSP 
assembly language and parallelized by hand. The performance obtained is better than 
the one obtained by the linear assembler compiler. The re-encoded functionalities 
were:  

a) ½ pixel interpolation arithmetic. Considering the worst case, to perform half-
pel motion compensation for an 8×8 block, 640 operations are needed2. Using 
DSP specific assembly instructions, these operations were done using 88 
instructions3 (see Figure 4-a). 
b) Prediction error addition and saturation. To perform the motion compensation, 
IDCT 16-bit pels and reference 8-bit pels must be added. In order to achieve this 
operation in an efficient way, packing and unpacking DSP specific instructions 
were used. The UNPACK4 instruction was used to store two 8-bit reference pels 
in a 32-bit register as two 16-bit half words. Zero-padding was applied to the most 
significant bits of each 8-bit value. The SPACKU4 instruction saturates four 
signed 16-bit values to unsigned 8-bit values and stores them out as packed 

                                                 
2 256 data loads (four pels are loaded to reconstruct each block pel), 256 additions, 64 shift operations and 64 byte stores are required. 
3 4 load instructions (LDNDW), 6 average instructions (AVGU4) and 1 storage instruction (STDW) are needed to compute 8 pels in a block. 



  

unsigned bytes in a 32-bit register. Using DSP specific assembly instructions, 
these operations were done using 112 instructions4 (see Figure 4-b). 

The implemented motion compensation function is capable of processing a complete 
4:2:0 structured block in 79 CPU cycles including function call and data set-up. This 
represents 1.24 (79 CPU_cycles / 64 pixels_per_block) cycles per pixel processed. 
Also in this step, the code and data sizes were adjusted to reduce the number of cache 
misses. All these changes achieved a 20% reduction in the clock-cycle count over 
previous results. 
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a) Operations needed to perform ½ pel interpolation 

for an 8×8 reference block. 
b) Optimized packaging/unpackaging DSP operations 

used to perform the motion compensation. 
Figure 4. Assembly functions. 

 

4. Fourth step: DMA transfers. DMA was used to perform data transfers mainly in the 
motion compensation block. Special care was taken with both, data alignment and 
balance among DMA queues to avoid CPU stalls. Figure 5-a shows a macroblock 
execution time diagram without DMA. In this time diagram all decoding phases are 
executed in series. Using the DMA is possible to parallelize the CPU execution and 
the DMA transfers (Figure 5-b). These changes improved the previous results in about 
65%. 
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a) Serial execution 
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b) Parallel execution using DMA  

Figure 5. Execution time diagram. 
                                                 
4 3 load instructions (LDNDW), 2 pack instructions (PACK4), 4 unpack instructions (UNPACK4), 4 add instructions (ADD2) and 1 storage 
instruction (STDW) are needed to compute 8 pels in a block. 



  

5. Fifth step: Double buffering and loop optimization. This previous time diagram 
presents two limitations: 

1. Reference macroblock. Before starting the phase E of a macroblock, it is 
necessary that the DMA associated to the reference macroblock (phase D) is 
finished. 

2. Reconstructed macroblock. Before starting the phase E of the macroblock #n, 
it is necessary that the DMA transfer of the reconstructed macroblock #n-1 
(phase F) is finished. It is worth noting that a wait is needed because the DMA 
transfer and the phase E of the macroblock #n use the same intermediate buffer. 

In order to solve the first problem, the decoding loop has been re-scheduled to reduce 
the amount of time the CPU is waiting for the DMA transfers to be completed. To 
solve the second problem a double buffer was included for the reconstructed 
macroblock. This double buffer allows to calculate the motion compensation of 
macroblock #n while the reconstructed macroblock #n-1 is been transferred. Figure 6 
shows the execution time diagram. This diagram shows that the CPU is executing 
instructions continually without waiting for DMA completion. 

These changes improved the previous results in about 13%. 
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Figure 6. Execution time diagram 

 

6. Sixth step: slice processing. Further optimization was obtained by reducing the 
number of DMA requests to store the reconstructed macroblocks in the image buffer. 
Before this step, for a D1 resolution frame, the number of DMA requests for a 
reconstructed frame was 48605. In this step, a new internal buffer to store a line of 
macroblocks was defined. Therefore, only one DMA request per line was needed. In 
addition, more optimized one dimension DMA transfers were done instead of bi-
dimensional ones. This change improved the previous results in 5%. 

These six steps have been completed for the MPEG-2 decoder. The results are reported in 
section 4. Now, the same optimization techniques are been used for the MPEG-4 ASP 
decoder. Preliminary results are given in section 6. In addition, HD MPEG-2 and H.264 
decoders are been developed using the same methodology. 

 

 

                                                 
5 720/16 mb/line × 576/16 mb/column × 3 components/mb=4860. 



  

4. MPEG-2 decoding performance data. 
The decoder performance has been measured using two video sequences. The first sequence, 
DTV_seq, is a video elementary stream extracted from a DTV emission with a 720x576 
resolution, a 3 Mbps average bit rate and a ratio of one I frame out of two P and B frames 
(20% I, 40% P and 40% B frames). The second sequence is one of the MPEG-2 reference 
streams [18], GI_9, with a 720x480 resolution, a 15 Mbps average bit rate and a ratio of 
6.25% of I frames, 18.75% of P frames and 75% of B frames. Figure 7-a shows the average 
number of system clock cycles needed to decode a frame from both the DTV_seq and the 
GI_9 streams, after each one of the six optimization steps.  

Figure 7-b shows, only for reference, the average number of D1 resolution frames/sec that can 
be decoded with a 480 MHz CPU clock. 
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Figure 7. MPEG-2 video decoder performance. 
 
Only for the fully optimized decoder, the number of CPU clock cycles needed to carry out the 
different parts of the algorithm is reported for the DTV_seq and the GI_9 streams in Table 1.  

 DTV_seq  (CPU CLKs•106) GI_9 (CPU CLKs•106) 
VLD and IQ 0.67 1.86 

IDCT  1.08 0.82 
Motion compensation 2.88 3.72 

Other functions 0.50 0.40 
TOTAL 5.13 6.80 

Table 1. CPU clock cycles spent in the different decoding processes. 
 
Table 2-a compares the results of our MPEG-2 decoder with the implementation proposed in 
[7] 6  using a DTV sequence. Table 2-b compares our MPEG-2 decoder with the 
implementation proposed in [8]7. 

 
 [7] Our implementation   [8] Our implementation 

Mcycles/frame  6.2 5.13  Mcycles/frame  9.14 6.8 

a) Average CPU clock cycles to decode a DTV frame     b) Average CPU clock cycles to decode a frame of GI_9 
Table 2. Average CPU clock cycles spent to decode a frame. 

 
The performance results of the optimized decoder allow to integrate other functionalities in 
the DSP, as we have done in the IP-STB prototype described in section 2. 
                                                 
6 This measure assumes an average of 20 B frames, 8 P frames and 2 I frames out of every 30 frames. 
7 Actually, in ¡Error! No se encuentra el origen de la referencia., two implementations are presented. Our proposal is better than the first 
of such implementations (see Table 2-b). The second implementation is better than our proposal in terms of speed but also needs more DSP 
resources. The performance is analyzed using the reference stream GI_9 [18]. 



  

Finally, several reference sequences8 have been decoded using our decoder and the ISO 
reference decoder [19]. The decoded sequences have been compared by computing the PSNR. 
In all cases, the average PSNR is greater than 50dBs. 

5. IP-STB real time testbench. 
In this section, the results of two real time tests performed using the IP-STB prototype 
described in section 2 are reported: 

1. In the first one, a PC encapsulates in real time a DVD movie (Star Wars: Episode I. 
with 5.6 Mb/s average bit rate and 9% I, 32 % P and 59% B frames) into MP2TS over 
IP and streams it using a multicast IP address to the IP STB.  

2. The second one uses a commercial gateway [20] to tune a satellite DTV channel (the 
channel is EuroSport with 3.2 Mb/s average bit rate and 5.5% I, 27.7% P and 66.6% B 
frames). Currently, the gateway tunes a transponder and encapsulates each program in 
an MP2TS over IP. All needed PSI tables are also generated. Each program inside the 
transponder is encapsulated in a different multicast IP address and a specific Session 
Announcement Protocol (SAP) packet is generated. The STB decodes the SAP and the 
PSI tables and plays the user selected program on a TV set.  

The testbench can be seen in Figure 8. The gateway is the box at the left side. The IP-STB is 
the prototype mentioned in section 2, working at 480 MHz clock rate. 
 

 
Figure 8. Testbench used in the profiling tests. 

 
Table 3 shows the percentage of the DSP computing power needed by each task playing the 
movie Star Wars: Episode I and the EuroSport channel. In this table, the column “others” 
includes the application task, the TCP/IP stack and the RF5 overload. 

 
    Task 

% DSP 
Transp. videodec. Audio 

dec. 
Video 
play 

Audio 
play 

others free 

Star Wars I 10.4 32.8 5.0 0.1 0.7 11.3 39.7 
EuroSport 6.0 28.5 5.0 0.1 0.7 11.3 48.4 

Table 3. CPU Percentage used and free space 
 

These results show that there is enough free DSP computational power to support a RTOS 
(e.g. Linux ) and a complete user interface using the same DSP. 
                                                 
8 The sequences used are tcela-9, tcela-10 and conf4. 



  

6. MPEG-4 preliminary results 
Real-time profiling tests have been done showing that the decoder performs in real-time (D1 
resolution @ 25 fps) using about 54% of the DSP capacity (average bit rate: 3.5 Mbps; 6.3% I, 
31.2% P, 62.5% B frames). These preliminary results are currently being improved. 

7. Conclusions and future work 
In this paper, the implementation of a DSP-based multi-format video decoder for an IP STB 
has been described. The software is capable to decode MPEG-2 MP@ML and MPEG-4 
ASP@L5 streams, using around 30% and 54% of the capacity of a TMSDM641 DSP 
@480MHz, respectively. These results have allowed the integration of the main IP-STB 
functionalities in a single DSP. An IP-STB prototype has been designed and fully tested in a 
real environment using DVD media and digital TV channels. Now, the efforts are oriented 
towards including other video formats such as HDTV and H.264, other audio formats such as 
AC3 and AAC, a RTOS and a complete user interface. 
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