

A DSP Based Multi-Format Video Decoder for an IP Set-Top Box

Fernando Pescador, Matías J. Garrido, Rafael Antoniello, Cesar Sanz, Eduardo Juarez and

Carlos Santos*
Department of Sistemas Electrónicos y de Control.

Universidad Politécnica de Madrid.
Ctra. de Valencia Km. 7
28031 Madrid. Spain.

*SIDSA
PTM Torres Quevedo, 1

Tres Cantos
28760 Madrid. Spain.

Email: pescador@sec.upm.es

Abstract1
In this paper, the implementation of a digital signal processor (DSP) based multi-format decoder
for an IP set-top box is described. Using several software optimization techniques, the
multi-format decoder has been fitted into a TMS320DM641 DSP @ 480 Mhz. Starting from a
native C code implementation, a six-step software optimization process has been applied to
improve the decoder performance. Currently, 30% and 54% of the DSP capacity is used for
MPEG-2 MP@ML and MPEG-4 ASP@L5 decoding, respectively. As a result, the cost of the
whole system is lowered since the DSP has enough room left to run other IP set-top box tasks such
as transport stream parsing, audio decoding, audio and video presentation and a user interface.
Nowadays, our middle term goal is to fit other video decoders (H.264 and HD MPEG-2), other
audio decoders (AC3 and AAC), a Real Time Operating System (RTOS) and a complete user
interface in the DSP.

1. Introduction.
Set-top boxes (STBs) are becoming key devices in home entertainment networks, not only to
receive digital television (DTV), but also as residential gateways to deliver multiple services
as well [1]. To gain in flexibility and modularity in home networks, the functionality of STBs
may be distributed between a main device and several peripherals, all interconnected by an
Ethernet network. As can be seen in Figure 1, the main device works as a gateway between
cable, terrestrial or satellite DTV distribution systems and the home network. The peripheral
devices are IP DTV decoders. Since a user may have one of these decoders placed close to
each TV set, they are also called IP STBs [2].

Gateway
(network interface)

Cable TV
network

Cable TV (DVB-C)

Satellite TV
(DVB-S)

Terrestrial TV (DVB-T)

Gateway
(network interface)

Cable TV
network

Cable TV (DVB-C)

Satellite TV
(DVB-S)

Terrestrial TV (DVB-T)

Gateway
(network interface)

Cable TV
network

Cable TV (DVB-C)

Satellite TV
(DVB-S)

Terrestrial TV (DVB-T)

InternetInternet

Router

Ethernet Home Network

IP-STB

PC-Server

IP-STBIP-STBIP-STB

Figure 1. TV distribution in home networks.

1 This work is partially supported by the ELITE project "Video Decoders Based on TI DSPs" and a grant TIC2003-09687-C02-01 from the
Ministerio de Ciencia y Tecnología (MCYT) of the Spanish Government.

As a consumer electronics device, an IP STB must be cheap and versatile. The high
computational costs of video decoder implementations constraints STB designs.
Non-programmable decoders [3] cannot cope with the quick evolution of audio and video
decoding algorithms. In addition, the latest generation of digital signal processors (DSPs) [4-6]
can support inexpensive and flexible decoders. As a consequence, much effort has been done
in the design of DSP-based video decoders in the last years [7-13]. Our short term goal is to
develop an IP-STB with audio and video multi-format decoders. Unlike the work done in [13],
our approach lowers system costs by taking advantage of the DSP capacity left to implement
the rest of STB functions.

In this paper, the design and optimization of a multi-format video decoder based on a
TMS320DM641 DSP @ 480 MHz is described. Performance results are given for SD
MPEG-2 decoding while preliminary results are outlined for MPEG-4 ASP decoding. The
optimization achieved in the video decoder has allowed the design of an IP STB whose main
tasks have been implemented within a single DSP.

The rest of the paper is organized as follows. In section 2, the IP STB architecture (hardware
and software) is explained for reference. In section 3, the video decoder software optimization
process is described. In section 4, profiling results for all functional blocks in the MPEG-2
decoding process are outlined. In section 5, a testbench to analyze the IP-STB real-time
performance is presented. In section 6, preliminary results for MPEG-4 ASP decoding are
shown. Finally, section 7 is devoted to conclusions and future work.

2. IP STB Architecture.
The IP STB hardware architecture [14] can be seen in Figure 2. The TMS320DM641 DSP
interfaces with an Ethernet port, two external memories, a video encoder, a digital to analog
audio converter, an infrared receiver and a JTAG emulator using a minimum amount of glue
hardware.

DSP

IR SensorGPIO IR SensorGPIO

SDRAM
16 MB

FLASH
1 MB

EMIF_A
SDRAM
16 MB

FLASH
1 MB

EMIF_A

I2CI2C

XTAL
40MHz

CLKINXTAL
40MHz

CLKIN

VCKVCK
Video

Encoder
VPO Y/C

CVBS

Video
Encoder

VPO Y/C

CVBS

Audio
DACMcASP XTAL

27MHz

Stereo
Audio
DACMcASP XTAL

27MHz

Stereo

Ethernet
Controller

EMACIP
Network

Ethernet
Controller

EMACIP
Network

JTAGDSP
Emulator JTAGDSP
Emulator

Figure 2. Board (a) and block diagram (b) of the IP STB.

To implement all IP STB tasks, the system is embedded into a multi-task software
architecture that has been built using the RF5 [15] (see Figure 3). A real-time kernel [16]
schedules the tasks execution and allows inter-tasks communication using queues and
mailboxes. The system is composed of six tasks: transport stream demultiplexing, audio and
video decoding, audio and video presentation and user application. The video decoder is
integrated in the video decoding task. This task reads one frame from a transport task output
buffer, decodes it, and stores the result in an image buffer. The video algorithm has been
designed to be eXpress-DSP Compliant [17].

Device Driver

Task

SCOM Message
SCOM Queue
Mailbox

Channel

Static shared buffer

SIO buffer

Cell with 1 algorithm

EMACEMAC

Tx

Transport

Tx

Transport

Tx

Transport ALG
Ai

Audio dec.

ALG
Ai

Audio dec.

PLAY
A

Audio play

PLAY
A

Audio play

PLAY
V

Video play

PLAY
V

Video play

ALG
Vi

Video dec.

ALG
Vi

Video dec.

video
VideoPortVideoPort

video
VideoPortVideoPort

audio
McASPMcASP

audio
McASPMcASP

User
(IR interface)

Application

User
(IR interface)

Application

Figure 3. Software architecture (see notation details in [15]).

3. MPEG-2 video decoder optimization.
The first version of the video decoder was developed in native C code implementing only the
MPEG-2 algorithm. Initially, the code was located entirely in external memory and spent
about 2.000 million clock cycles per frame to decode MPEG-2 MP@ML streams.

The optimization process was developed in six steps:

1. First step: memory management optimization. After several iterations, the 128 kB
L2 memory was configured as a 32 kB 2nd level cache and a 96 kB SDRAM internal
memory. All decoder functions were fitted in the latter. With these changes, an
improvement of about 95% over the initial version was achieved.

2. Second step: function optimization. Optimized functions taken from the DSP vendor
were adapted to implement several functional blocks (variable length decoding,
inverse quantization and inverse discrete cosine transform). As a consequence, an
improvement of 50% above the previous results was achieved.

3. Third step: assembly coding. The execution was optimized by increasing the
parallelism in critical parts of the algorithm. These parts were re-encoded in the DSP
assembly language and parallelized by hand. The performance obtained is better than
the one obtained by the linear assembler compiler. The re-encoded functionalities
were:

a) ½ pixel interpolation arithmetic. Considering the worst case, to perform half-
pel motion compensation for an 8×8 block, 640 operations are needed2. Using
DSP specific assembly instructions, these operations were done using 88
instructions3 (see Figure 4-a).
b) Prediction error addition and saturation. To perform the motion compensation,
IDCT 16-bit pels and reference 8-bit pels must be added. In order to achieve this
operation in an efficient way, packing and unpacking DSP specific instructions
were used. The UNPACK4 instruction was used to store two 8-bit reference pels
in a 32-bit register as two 16-bit half words. Zero-padding was applied to the most
significant bits of each 8-bit value. The SPACKU4 instruction saturates four
signed 16-bit values to unsigned 8-bit values and stores them out as packed

2 256 data loads (four pels are loaded to reconstruct each block pel), 256 additions, 64 shift operations and 64 byte stores are required.
3 4 load instructions (LDNDW), 6 average instructions (AVGU4) and 1 storage instruction (STDW) are needed to compute 8 pels in a block.

unsigned bytes in a 32-bit register. Using DSP specific assembly instructions,
these operations were done using 112 instructions4 (see Figure 4-b).

The implemented motion compensation function is capable of processing a complete
4:2:0 structured block in 79 CPU cycles including function call and data set-up. This
represents 1.24 (79 CPU_cycles / 64 pixels_per_block) cycles per pixel processed.
Also in this step, the code and data sizes were adjusted to reduce the number of cache
misses. All these changes achieved a 20% reduction in the clock-cycle count over
previous results.

8 PIXELS = 4 LDNDW + 6 AVGU4 + 1 STDW
1 BLOCK = 32 LDNDW + 48 AVGU4 + 8 STDW = 88 operations/block
1 MACROBLOCK = 6 BLOCKS = 528 operations/MB

B11 B12 B13 B14

B12 B13 B14 B15

B21 B22 B23 B24

B22 B23 B24 B25

R11 R12 R13 R14

+

B15 B16 B17 B18

B16 B17 B18 C11

B25 B26 B27 B28

B26 B27 B28 C12

R15 R16 R17 R18

32 bit register32 bit register

LDNDW

LDNDW

LDNDW

LDNDW

AVGU4

STDW

B11 B12 B13 B14

B12 B13 B14 B15

B21 B22 B23 B24

B22 B23 B24 B25

R11 R12 R13 R14

+

B15 B16 B17 B18

B16 B17 B18 C11

B25 B26 B27 B28

B26 B27 B28 C12

R15 R16 R17 R18

B11 B12 B13 B14

B12 B13 B14 B15

B21 B22 B23 B24

B22 B23 B24 B25

R11 R12 R13 R14

+

B15 B16 B17 B18

B16 B17 B18 C11

B25 B26 B27 B28

B26 B27 B28 C12

R15 R16 R17 R18

32 bit register32 bit register

LDNDW

LDNDW

LDNDW

LDNDW

AVGU4

STDW

C11 C12 C13 C14 C15 C16
C21 C22 C23
C31 C32

C24

C77 C78
C86 C87 C88

C11

B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B16 B17 B18

B78B77

B86 B87 B88

C12 C13 C14B11 B12 B13 B14

+
+

+
+

R’11 R’12 R’13 R’14

R13 R14R11 R12

LDDW

ADD2

SPACKU4

8 PIXELS = 3 LDDW + 4 UNPACK4 + 4 ADD2 + 2 SPACKU4 + 1 STDW = 14 operations
1 BLOCK = 24 LDDW + 32 UNPACK4 + 32 ADD2 + 16 SPACKU4 + 8 STDW = 112 operations /block
1 MACROBLOCK = 6 BLOCKS = 672 operations /MB

16 BIT
IDCT
COEFFICIENT

8 BIT
REFERENCE
IMAGE

UNPACK4

00 B11 00 B12 00 B13 00 B14

a) Operations needed to perform ½ pel interpolation

for an 8×8 reference block.
b) Optimized packaging/unpackaging DSP operations

used to perform the motion compensation.
Figure 4. Assembly functions.

4. Fourth step: DMA transfers. DMA was used to perform data transfers mainly in the
motion compensation block. Special care was taken with both, data alignment and
balance among DMA queues to avoid CPU stalls. Figure 5-a shows a macroblock
execution time diagram without DMA. In this time diagram all decoding phases are
executed in series. Using the DMA is possible to parallelize the CPU execution and
the DMA transfers (Figure 5-b). These changes improved the previous results in about
65%.

t

D
#MB1 REF

D
#MB1 REF

A
Mb #1

A
Mb #1

A
Mb #1

A
Mb #1

B
Mb #1

B
Mb #1

B
Mb #1

B
Mb #1

C
Mb #1

C
Mb #1

C
Mb #1

C
Mb #1

F
#MB1REC.

F
#MB1REC.

E
Mb #1

E
Mb #1

E
Mb #1

E
Mb #1

D
#MB2REF

A
Mb #1

A
Mb #2

B
Mb #1

B
Mb #2

C
Mb #1

C
Mb #2

F
#MB2 REC.

E
Mb #1

E
Mb #2

D
#MB2REF

A
Mb #1

A
Mb #2

B
Mb #1

B
Mb #2

C
Mb #1

C
Mb #2

F
#MB2 REC.

E
Mb #1

E
Mb #2

A: Decode MB mode & MV
B: Reference MB calculation
C: VLD+IDCT
D: Read Reference MB
E: Motion Compensation
F: Write Reconstructed MB

a) Serial execution

C
Mb #2

C
Mb #2

D (DMA)
#MB2 REF

A
Mb #1

B
Mb #1

A
Mb #1

B
Mb #1

E
Mb #1

E
Mb #1

E
Mb #1

F (DMA)
#MB1 REC.

F (DMA)
#MB1 REC.

A
Mb #2

B
Mb #2

A
Mb #2

A
Mb #2

B
Mb #2

B
Mb #2

tt

C
Mb #1

DMA IN MB#1
WAIT

D (DMA)
#MB1 REF

C
Mb #1

C
Mb #1

DMA IN MB#1
WAIT

D (DMA)
#MB1 REF

C
Mb #3

C
Mb #3

E
Mb #2

E
Mb #2

DMA IN MB#2
WAIT

A
Mb #3

A
Mb #3

B
Mb #3

B
Mb #3

E
Mb #3

E
Mb #3

DMA IN MB#3
WAIT

F (DMA)
#MB2 REC.

D (DMA)
#MB3 REF

F (DMA)
#MB2 REC.

DMA OUT MB#1
WAIT

DMA OUT MB#2
WAIT

b) Parallel execution using DMA

Figure 5. Execution time diagram.

4 3 load instructions (LDNDW), 2 pack instructions (PACK4), 4 unpack instructions (UNPACK4), 4 add instructions (ADD2) and 1 storage
instruction (STDW) are needed to compute 8 pels in a block.

5. Fifth step: Double buffering and loop optimization. This previous time diagram
presents two limitations:

1. Reference macroblock. Before starting the phase E of a macroblock, it is
necessary that the DMA associated to the reference macroblock (phase D) is
finished.

2. Reconstructed macroblock. Before starting the phase E of the macroblock #n,
it is necessary that the DMA transfer of the reconstructed macroblock #n-1
(phase F) is finished. It is worth noting that a wait is needed because the DMA
transfer and the phase E of the macroblock #n use the same intermediate buffer.

In order to solve the first problem, the decoding loop has been re-scheduled to reduce
the amount of time the CPU is waiting for the DMA transfers to be completed. To
solve the second problem a double buffer was included for the reconstructed
macroblock. This double buffer allows to calculate the motion compensation of
macroblock #n while the reconstructed macroblock #n-1 is been transferred. Figure 6
shows the execution time diagram. This diagram shows that the CPU is executing
instructions continually without waiting for DMA completion.

These changes improved the previous results in about 13%.

E
Mb #1

F (DMA)
#MB1 REC.
BUFFER1

E
Mb #1

E
Mb #1

F (DMA)
#MB1 REC.
BUFFER1

A
Mb #4

B
Mb #4

C
Mb #4

D (DMA)
#MB4 REF

A
Mb #4

A
Mb #4

B
Mb #4

B
Mb #4

C
Mb #4

C
Mb #4

D (DMA)
#MB4 REF

A
Mb #2

B
Mb #2

C
Mb #2

D (DMA)
#MB2 REF

E
Mb #2

F (DMA)
#MB2 REC.
BUFFER2

A
Mb #2

B
Mb #2

C
Mb #2

D (DMA)
#MB2 REF

E
Mb #2

F (DMA)
#MB2 REC.
BUFFER2

A
Mb #2

A
Mb #2

B
Mb #2

B
Mb #2

C
Mb #2

C
Mb #2

D (DMA)
#MB2 REF

E
Mb #2

E
Mb #2

F (DMA)
#MB2 REC.
BUFFER2

A
Mb #3

B
Mb #3

A
Mb #3

A
Mb #3

B
Mb #3

B
Mb #3

C
Mb #3

D (DMA)
#MB3 REF

E
Mb #3

F (DMA)
#MB3 REC.
BUFFER1

C
Mb #3

C
Mb #3

D (DMA)
#MB3 REF

E
Mb #3

E
Mb #3

F (DMA)
#MB3 REC.
BUFFER1

tt

A: Decode MB mode & MV
B: Reference MB calculation
C: VLD+IDCT
D: Read Reference MB
E: Motion Compensation
F: Write Reconstructed MB

Figure 6. Execution time diagram

6. Sixth step: slice processing. Further optimization was obtained by reducing the
number of DMA requests to store the reconstructed macroblocks in the image buffer.
Before this step, for a D1 resolution frame, the number of DMA requests for a
reconstructed frame was 48605. In this step, a new internal buffer to store a line of
macroblocks was defined. Therefore, only one DMA request per line was needed. In
addition, more optimized one dimension DMA transfers were done instead of bi-
dimensional ones. This change improved the previous results in 5%.

These six steps have been completed for the MPEG-2 decoder. The results are reported in
section 4. Now, the same optimization techniques are been used for the MPEG-4 ASP
decoder. Preliminary results are given in section 6. In addition, HD MPEG-2 and H.264
decoders are been developed using the same methodology.

5 720/16 mb/line × 576/16 mb/column × 3 components/mb=4860.

4. MPEG-2 decoding performance data.
The decoder performance has been measured using two video sequences. The first sequence,
DTV_seq, is a video elementary stream extracted from a DTV emission with a 720x576
resolution, a 3 Mbps average bit rate and a ratio of one I frame out of two P and B frames
(20% I, 40% P and 40% B frames). The second sequence is one of the MPEG-2 reference
streams [18], GI_9, with a 720x480 resolution, a 15 Mbps average bit rate and a ratio of
6.25% of I frames, 18.75% of P frames and 75% of B frames. Figure 7-a shows the average
number of system clock cycles needed to decode a frame from both the DTV_seq and the
GI_9 streams, after each one of the six optimization steps.

Figure 7-b shows, only for reference, the average number of D1 resolution frames/sec that can
be decoded with a 480 MHz CPU clock.

1634,9 2213,2

57
81,6

27,9 24,7 22,3 19,9

6,6 7,9
5,6 6,8 5,13 6,8

1

10

100

1000

10000

C
PU

_c
yc

le
s/

fr
am

e
(1

06)

Raw-C Memory
management

IDCT+VLD Assembly DMA Loop
modification

1D DMA

DTV_seq GI_9

0,290,22
8,4 5,9

17,2 19,4 21,5 24,1

72,7

60,7

85,7

70,6

93,5

70,5

0

10

20

30

40

50

60

70

80

90

100

fr
am

es
/s

ec
on

d

Raw C Memory
Management

IDCT+VLD Assembly DMA Loop
modification

1D DMA

Sec. TV Sec. GI_9

a) Average number of CPU_cycles/frame b) Number of images/second @480MHz

Figure 7. MPEG-2 video decoder performance.

Only for the fully optimized decoder, the number of CPU clock cycles needed to carry out the
different parts of the algorithm is reported for the DTV_seq and the GI_9 streams in Table 1.

 DTV_seq (CPU CLKs•106) GI_9 (CPU CLKs•106)
VLD and IQ 0.67 1.86

IDCT 1.08 0.82
Motion compensation 2.88 3.72

Other functions 0.50 0.40
TOTAL 5.13 6.80

Table 1. CPU clock cycles spent in the different decoding processes.

Table 2-a compares the results of our MPEG-2 decoder with the implementation proposed in
[7] 6 using a DTV sequence. Table 2-b compares our MPEG-2 decoder with the
implementation proposed in [8]7.

 [7] Our implementation [8] Our implementation

Mcycles/frame 6.2 5.13 Mcycles/frame 9.14 6.8

a) Average CPU clock cycles to decode a DTV frame b) Average CPU clock cycles to decode a frame of GI_9
Table 2. Average CPU clock cycles spent to decode a frame.

The performance results of the optimized decoder allow to integrate other functionalities in
the DSP, as we have done in the IP-STB prototype described in section 2.

6 This measure assumes an average of 20 B frames, 8 P frames and 2 I frames out of every 30 frames.
7 Actually, in ¡Error! No se encuentra el origen de la referencia., two implementations are presented. Our proposal is better than the first
of such implementations (see Table 2-b). The second implementation is better than our proposal in terms of speed but also needs more DSP
resources. The performance is analyzed using the reference stream GI_9 [18].

Finally, several reference sequences8 have been decoded using our decoder and the ISO
reference decoder [19]. The decoded sequences have been compared by computing the PSNR.
In all cases, the average PSNR is greater than 50dBs.

5. IP-STB real time testbench.
In this section, the results of two real time tests performed using the IP-STB prototype
described in section 2 are reported:

1. In the first one, a PC encapsulates in real time a DVD movie (Star Wars: Episode I.
with 5.6 Mb/s average bit rate and 9% I, 32 % P and 59% B frames) into MP2TS over
IP and streams it using a multicast IP address to the IP STB.

2. The second one uses a commercial gateway [20] to tune a satellite DTV channel (the
channel is EuroSport with 3.2 Mb/s average bit rate and 5.5% I, 27.7% P and 66.6% B
frames). Currently, the gateway tunes a transponder and encapsulates each program in
an MP2TS over IP. All needed PSI tables are also generated. Each program inside the
transponder is encapsulated in a different multicast IP address and a specific Session
Announcement Protocol (SAP) packet is generated. The STB decodes the SAP and the
PSI tables and plays the user selected program on a TV set.

The testbench can be seen in Figure 8. The gateway is the box at the left side. The IP-STB is
the prototype mentioned in section 2, working at 480 MHz clock rate.

Figure 8. Testbench used in the profiling tests.

Table 3 shows the percentage of the DSP computing power needed by each task playing the
movie Star Wars: Episode I and the EuroSport channel. In this table, the column “others”
includes the application task, the TCP/IP stack and the RF5 overload.

 Task

% DSP
Transp. videodec. Audio

dec.
Video
play

Audio
play

others free

Star Wars I 10.4 32.8 5.0 0.1 0.7 11.3 39.7
EuroSport 6.0 28.5 5.0 0.1 0.7 11.3 48.4

Table 3. CPU Percentage used and free space

These results show that there is enough free DSP computational power to support a RTOS
(e.g. Linux) and a complete user interface using the same DSP.

8 The sequences used are tcela-9, tcela-10 and conf4.

6. MPEG-4 preliminary results
Real-time profiling tests have been done showing that the decoder performs in real-time (D1
resolution @ 25 fps) using about 54% of the DSP capacity (average bit rate: 3.5 Mbps; 6.3% I,
31.2% P, 62.5% B frames). These preliminary results are currently being improved.

7. Conclusions and future work
In this paper, the implementation of a DSP-based multi-format video decoder for an IP STB
has been described. The software is capable to decode MPEG-2 MP@ML and MPEG-4
ASP@L5 streams, using around 30% and 54% of the capacity of a TMSDM641 DSP
@480MHz, respectively. These results have allowed the integration of the main IP-STB
functionalities in a single DSP. An IP-STB prototype has been designed and fully tested in a
real environment using DVD media and digital TV channels. Now, the efforts are oriented
towards including other video formats such as HDTV and H.264, other audio formats such as
AC3 and AAC, a RTOS and a complete user interface.

8. References
[1] F.T.H. den Hartog et al. "Convergence of Residential Gateway Technology: Analysis of Evolutionary

Paths", IEEE Consumer Communications and Networking Conference, pp.1-6, Jan. 2004
[2] C. Luo et al. "Design and implementation of multiplexing rate control in broadband access network TV

transmission system", IEEE Trans. on Consumer Electronics, Vol. 50, pp. 849 - 855, Aug. 2004.
[3] Q. Peng and J. Jing. "System-on-chip design for TV-centric home networks". IEEE Consumer

Communications and Networking Conference, pp. 501 - 506, Jan. 2004.
[4] TMS320DM641 DSPs Data Manual". (SPRS222D). http://focus.ti.com/lit/ds/symlink/tms320dm641.pdf
[5] Philips Semicond. Nexperia. http://www.semiconductors.philips.com/products/nexperia/home/index.html
[6] Equator Technologies. Video centric SOCs. http://www.equator.com/productsservices/videocentricsocs.htm
[7] S. Cacopardi et al. "A DSP based MPEG-2 video decoder for HDTV or multichannel SDTV". IEEE

Workshop on Multimedia Signal Processing, pp. 134-137, Dec. 2002.
[8] S. Arora et al. "Multi Channel MPEG-2 Decoder Implementation for the DM642 Multimedia Processor".

GSPx 2003 Conference Paper. http://www.techonline.com/pdf/pavillions/gspx/475.pdf.
[9] http://www.techonline.com/pdf/pavillions/gspx/475.pdf
[10] C. Pretty and J. G. Chase. "Reconfigurable DSPs for efficient MPEG-4 video and audio decoding". Proc. of

the IEEE International Workshop on Electronic Design, Test and Applications, pp. 63-67, Jan 2002.
[11] C. Basoglu et al. "The Equator MAP-CA DSP: an end-to-end broadband signal processor VLIW". IEEE

Trans. on Circuits and Systems for Video Technology, vol. 12, issue 8, pp. 646-659, Aug. 2002.
[12] J.-H. Kuo et al. "A low-cost media-processor based real-time MPEG-4 video decoder". IEEE Trans. on

Consumer Electronics, pp. 1488-1497, Nov. 2003.
[13] Y.-S. Tung et al. "DSP-Based Multi-Format Video Decoding Engine for Media Adapter Applications".

IEEE Trans. on Consumer Electronics, Volume 51, Issue 1, pp. 273 - 280, Feb. 2005.
[14] F. Pescador et al. "A DSP Based IP Set-Top Box for Home Entertainment". IEEE International Conference

on Consumer Electronic, pp. 271-272, Jan. 2006.
[15] Reference Frameworks for eXpressDSP Software: RF5 an Extensive, High-Density System (SPRA795A).

http://focus.ti.com/lit/an/spra795a/spra795a.pdf.
[16] TMS320 DSP-BIOS user's guide (SPRU423B). http://focus.ti.com/lit/ug/spru423b/spru423b.pdf.
[17] TMS320 DSP Algorithm Standard API Reference (SPRU360C).

http://focus.ti.com/lit/ug/spru360c/spru360c.pdf.
[18] ISO13818-4. Information Technology – Generic coding of moving pictures and associated audio

information. Conformance testing. (Dec. 1998).
[19] ISO13818-5. Information technology – Generic coding of moving pictures and associated audio

information–Software simulation. (1998).
[20] SIDSA. Ether TV. http://www.sidsa.com/DATASHEETS/SIDSA_EtherTV_brochure_big_box.pdf.

