

Program	59EC – Communications Electronic Engineering B. Eng. 59SC – Telecommunications Systems Engineering B. Eng.	
	59SO – Sound and Image Engineering B.Eng. 59TL – Telematics Engineering B. Eng.	

Course number and name		
Number	595000003, 595000302, 595000102, 595000202	
Name	Calculus I	
Semester	S1 [(September-January)]	

Credits and contact hours				
ECTS Credits	6			
Contact hours	60			

	López-Salazar Codes, Jerónimo [jeronimo.lopezsalazar@upm.es]
--	---

Specific course information

Description of course content

The aim is to consolidate and give rigour to the knowledge of infinitesimal calculus that the student had acquired in the secondary education: limits, continuity, derivability and integrability. New concepts are also introduced such as differential equations, sequences and series of real numbers and series of functions.

List of topics to be covered

- 1. Real functions of real variable.
 - 1.1. Introduction to the real numbers.
 - 1.2. Limits and continuity.
 - 1.3. Derivatives.
 - 1.4. Rolle's theorem. Theorem of the medium value.
 - 1.5. L'Hôpital's rule.
 - 1.6. Monotonicity, concavity and local extrema.
 - 1.7. Taylor's theorem.
- 2. The Riemann Integral.
 - 2.1. Definition and properties.
 - 2.2. Fundamental Theorem of Calculus.
 - 2.4. Improper integrals.
- 3. First order ordinary differential equations.
 - 3.1. Definition of differential equation.
 - 3.2. Separation of variables.
 - 3.3. Homogeneous equation.
 - 3.4. Linear equation.

- 3.5. Bernoulli's equation.
- 4. Numerical series and sequences.
 - 4.1. Limit to the sequences.
 - 4.2. Monotone sequences.
 - 4.3. Numerical series.
 - 4.4. Telescoping and geometric series.
 - 4.5. Series of positive terms. Convergence criterion.
 - 4.6. Alternating series. Leibniz rule.
 - 4.7. Absolutely convergent series.
- 5. Power series.
 - 5.1. Convergence interval.
 - 5.2. Integration and derivative.
 - 5.3. Taylor series.
- 6. Fourier series.
 - 6.1. 2π -periodic function.
 - 6.2. Pairing and unpairing functions.
 - 6.3. Arbitrary function.
 - 6.4. Dirichlet's.

Prerequisites or co-requisites

None

Specific goals for the course

Specific outcomes of instruction

- RA1082 To know the concepts of continuity and derivative of a real variable and of the main related theorems.
- RA1085 To solve the basic examples of the ordinary differential equations.
- RA1100 To know the fundamental theorem of the Calculus.
- RA1088 To develop elementary functions in power series.
- RA1089 To develop periodic functions in Fourier series.
- RA1087 To analyze the convergence of numerical series.

Further reading and supplementary materials

- J. Burgos. Cálculo infinitesimal de una variable. McGraw-Hill. 2007.
- A. García, F. García, A. Gutiérrez, A. López, G. Rodríguez, A. Villa. Cálculo I.
 Teoría y problemas de Análisis Matemático en una variable. CLAGSA, 2007.
- R. Larson, B.H. Edwards. Cálculo I. McGraw Hill, 2010.
- S.L. Salas, E. Hille, G.J. Etgen. Calculus, vol. 1. Reverté, 2006.
- M. Spivak. Calculus. Reverté, 2012.