

Program	59EC – Communications Electronic Engineering B. Eng.				
	59SC – Telecommunications Systems Engineering B. Eng.				
	59SO – Sound and Image Engineering B.Eng.				
	59TL – Telematics Engineering B. Eng.				

Course code and name				
Code	595040537			
Name	Introduction to Quantum Computing			
Semester	S6 [(February-June)]			

Credits and contact hours						
ECTS Credits	4,5					
Contact hours	45					

Specific course information					
Description of course content					
List of topics to be covered					
1 Introduction to quantum physics and quantum computing.					
• Quantum states.					
• From the bit to the qbit.					
• Kroneker (or tensor) product.					
Computational basis.					
2 Entangled states. Hermitian operators.					
• The spin 1/2 system. The Bloch sphere.					
Hermitian operators and observables.					
3 Quantum gates: Pauli, Hadamard, CNOT and Toffoli gates.					
Unitary matrix notation and operation over qubit states of:					
1-qubit quantum gate: Pauli gate					
2-qubits quantum gates: Hadamard and CNOT					
3-qubits quantum gate: Toffoli gate					
4 Quantum circuits. Introduction to qiskit framework					
• Introduction to quantum gate notation and basic quantum circuits.					
• Usage of Quirk (Quantum Circuit Simulator).					
• Construction of a Toffoli gate by means of CNOT gates.					
• Quantum teleportation. Simple quantum circuits for increasing and decreasing.					
• A very basic introduction to the "de-facto" standard (Python) qiskit framework.					
5 Quantum annealing					

- Introduction to the concept of quantum annealing.
- Introduction to the Satisfiability Problem (SAT).
- Choice of Hamiltonians and interpolation functions to solve a SAT problem via quantum annealing.

Simulation of simple quantum annealing in qiskit.

Prerequisites or co-requisites

- Algebra / Linear Algebra

Course category in the program

R (required)

 \blacksquare E (elective)

(elective courses may not be offered every year)

Specific goals for the course

Specific outcomes of instruction

RA104 - To understand security threats to data infrastructures and risk analysis methodologies.

RA105 – To design and apply data infrastructure protection techniques.

RA106 – To know the legislation on data protection.

Further reading and supplementary materials

Moodle Web resources

Teaching methodology							
<u>X</u> lectures		_X_ problem solving sessions	_X_ collaborative actions	<u>X</u> laboratory sessions			
Other:							