

Program	59EC – Communications Electronic Engineering B. Eng. 59SC – Telecommunications Systems Engineering B. Eng.
	59SO – Sound and Image Engineering B. Eng. 59TL – Telematics Engineering B. Eng.

Course number and name		
Number	595000019, 595000318, 595000118, 595000218	
Name	Wave Propagation	
Semester	S7 [(September-January)] & S8 [(February-June)]	

	Credits and contact hours
ECTS Credits	4,5
Contact hours	45

Coordinator's name	Merodio Cámara, Pablo [pablo.merodio@upm.es]
--------------------	--

Specific course information

Description of course content

Phenomena of generation and propagation of both electromagnetic and acoustic waves are studied.

The syllabus consists of 9 topics; the first one (Vector Operators) is a review of essential mathematical knowledges for a right progress of the course.

List of topics to be covered

- 1. Vector operators
 - 1.1. Gradient of a scalar field
 - 1.2. Divergence and rotational of a vector field
 - 1.3. Helmholtz's theorem
- 2. Plane acoustic waves
 - 2.1. Complex notation
 - 2.2. Linear acoustics
 - 2.3. Wave equation. Harmonic solution
 - 2.4. Energy density. Acoustic intensity
- 3. Spherical acoustic waves
 - 3.1. Spherical wave equation
 - 3.2. Harmonic solution. Acoustic variables of a spherical wave
 - 3.3. Intensity of a spherical wave
- 4. Stationary acoustic waves
 - 4.1. Reflection and transmission of a plane wave
 - 4.2. Standing acoustic waves
 - 4.3. Impedance of a standing wave
- 5. Maxwell equations. Wave equation. Energy
 - 5.1. Maxwell's equations in differential form

- 5.2. Electrical and magnetic potentials
- 5.3. Wave equation for fields and potentials
- 5.4. Electromagnetic field energy. Poynting's theorem
- 5.5. Application: Radiation from an oscillating dipole
- 6. Propagation of electromagnetic waves in a dielectric medium
 - 6.1. Solution for plane waves
 - 6.2. Impedance and refractive index of the medium
 - 6.3. Energy propagation
 - 6.4. Polarization
- 7. Propagation of electromagnetic waves in conductive media
 - 7.1. Free charge density in the conductor. Transversal character
 - 7.2. Solution for plane waves. Complex magnitudes
 - 7.3. Energy balance
- 8. Reflection and refraction
 - 8.1. Reflection and refraction at the dielectric-dielectric boundary
 - 8.2. Fresnel equations
 - 8.3. Reflection and refraction coefficients
 - 8.4. Reflection and refraction at the dielectric-conductor boundary
- 9. Guided waves
 - 9.1. Standing waves produced by reflection at the dielectric-conductor boundary. TE and TM waves
 - 9.2. Waveguide formed by two parallel conductive planes
 - 9.3. Energy balance
 - 9.4. Rectangular waveguide

Prerequisites or co-requisites

- Electromagnetism and Waves
- Calculus I & II
- Linear Algebra

E (elective) ses may not be offered every year)

Specific goals for the course

Specific outcomes of instruction

- RA94 To analyze plane and spherical acoustic waves within limited and unlimited environments.
- RA89 To analyze the main characteristics of the electromagnetic waves and fields
- RA95 To understand the basic properties of the device materials.
- RA85 To analyze the phenomena associated to the oscillations.
- RA88 To analyze the main characteristics of the magnetostatic field.
- RA87 To analyze the phenomena associated to the electric field.
- RA90 To understand and analyze the meaning and consequences of the Maxwell's equations.
- RA92 To analyze the effect of the boundary conditions and the guided

electromagnetic wave propagation.

- RA93 To analyze the phenomena associated to the radiation.
- RA86 To analyze the main characteristics of the wave propagation.
- RA91 To analyze the electromagnetic wave propagation in dielectrics and conductors.

Further reading and supplementary materials

- Elementos de electromagnetismo. Matthew N. O. Sadiku. Edición 3^a. Ed. Oxford University Press.
- Fundamentos de la teoría electromagnética. Reitz, Milford y Christy. Ed. Pearson Educación.
- Campos y ondas electromagnéticos. P. Lorrain y D.R.Corson. Ed. Selecciones Científicas.
- Fundamentos de Acústica. L.E. Kinsler, A.R. Frey, A.B. Coppens y J.V. Sanders.
 Ed. Limusa.
- Moodle.