Sampling and Reconstruction of Sparse Signals

Guest Lecture in Madrid, 28.09. - 02.10.2015

Volker Kühn

Universität Rostock
Institut für Nachrichtentechnik
In the last two decades the pervasion of our daily life by communication and multimedia devices like smart phones, digital cameras or MP3 players grows at increasing speed. The basic foundation of all devices is digital signal processing, especially the representation of analog signals by bits and bytes. In order to keep storage and data rate requirements at a moderate level, compression is an inevitable part of digital systems. It removes redundant parts from the signal and represents these signals with as few bits as possible. Thereby, lossy and lossless compression are distinguished. We call compressible signals as being sparse.

Conventional strategies first sample the analog signal at high rate according to Shannon’s famous sampling theorem and compress it afterwards. This provokes the question why sampling itself cannot be directly perform the compression in order to avoid costly sampling at high rate. In order to answer this question, the lectures will give an overview of state-of-the-art sampling techniques and will focus on two different approaches.
Content Description - 2

First, a technique called ‘Compressed Sensing’ will be introduced allowing to compress sparse signals in a very efficient way. After discussing some toy examples to illustrate the underlying problem, the compression and its fundamental properties are introduced. Next, the reconstruction step is explained for one simple exemplary algorithm, the Orthogonal Matching Pursuit (OM) algorithm. In the second part, Shannon’s famous sampling theorem will be revisited first. Next, the class of analog Finite Rate of Innovation (FRI) signals will be introduced which can be sampled at rates much lower than stated by Shannon. For reconstruction, the annihilating filter as one example of spectral estimation algorithms will be presented. Comparing these approaches with classical compression techniques like MP3, MPEG or H.265 shows that the complexity is shifted from the encoder which becomes very simple to the decoder.
Lectures

What is this course about?

1. Compressed Sensing
 - Sparse signals, single pixel camera, Magnetic Resonance Imaging (MRI)
 - Toy example with sparse polynomials
 - Norms (ℓ_0, ℓ_1, ℓ_2)
 - Compressed Sensing (CS)
 - Optimization problem
 - Greedy reconstruction algorithms
Lectures

What is this course about?

2 Sampling analog FRI signals

- Conventional sampling according to Shannon/Kotelnikov
- Sampling FRI signals using parametric description
- Spectral estimation by annihilating filter method
- Application to Particle Image Velocimetry
- Summary and Comparison of FRI and CS
Who knows

- Fourier and z-transformation?
- linear algebra?
- sampling theorem of Shannon?
- compressed sensing?
Motivation

- Perfectly sparse signals allow exact description by few components in certain domain (subspace) \rightarrow lossless compression
- Approximately sparse signals dominated by few large components \rightarrow lossy compression
- Rich area of applications: radar, sonar, medical (ultrasound), communications, multimedia signal processing,
Sampling Sparse Signals

- Conventional approaches: sample at high rate and compress signal afterwards
 - Audio signal processing (mp3,)
 - Video and image compression (MPEG, H.265, JPEG,)
- Sampling according to Shannon requires sampling rate twice as high as signal bandwidth (sufficient criterion, no necessary condition!)
- Questions:
 - Why high rate sampling and successive compression?
 - Can the sampling rate be reduced to perform compression directly?
 - Is (perfect) reconstruction possible even for non-bandlimited signals?
- Yes, but at the expense of increased reconstruction complexity!
Image Compression

- Natural images typically are not sparse ...
Image Compression

... but they are approximately sparse in Wavelet-/DCT-/Fourierbasis\(^1\)

\(^1\)many coefficients are almost zero → lossy compression
Image Compression

- Reconstruction results

Original 256 × 256

Reconstruction $M = 16384 \ c = 1/4$

Reconstruction $M = 8192 \ c = 1/8$

- Many sophisticated algorithms for
 - image compression (JPEG, JPEG 2000, ...)
 - video compression (MPEG, H26x, ...)
 - audio compression (AAC, MP3, ...)

V. Kühn | Sampling and Reconstruction of Sparse Signals | Compressed Sensing → Motivation
Magnetic Resonance Imaging (MRI)

Principle

- Medical imaging tool with inherently slow data acquisition process
- Temporal MRI signal directly samples the spatial frequency domain of the image

\[s(t) = \int_R m(\vec{r}) e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r} \]

- Received signal \(s(t) \) equals Fourier transform of object \(m(\vec{r}) \) sampled at the spatial frequency \(\vec{k}(t) \)
- Incoherent detection (energy detection similar to camera sensors)
- Measurement time per coefficient limited by physical constraints (max. amplitude and max. slew-rate to avoid nerve stimulation)
Magnetic Resonance Imaging (MRI)

Example 1: MRI of human head

- Fewer measurements result in blurs, aliasing or random artifacts
- Using CS-techniques with random sampling yields better performance

Magnetic Resonance Imaging (MRI)

Example 2: Logan Shepp test image

Magnetic Resonance Imaging (MRI)

Example 3: Real MRI Images

- CS allows for less measurements required for approximately same resolution
- → decreased measurement time
- → higher convenience for patients

Single Pixel Camera4

- Image acquisition with \textbf{only one} photo-detector
- Detector acquires multiple pseudorandom linear projections via DMD per scene
- Beneficial if detectors are expensive

4http://dsp.rice.edu/cscamera, DMD: Digital Micromirror Device, RNG: Random Number Generator
Single Pixel Camera

Hardware-setup [http://dsp.rice.edu/cscamera]
Single Pixel Camera

Some reconstruction results\(^5\)

- Original, 16384 pixels:
 - 1300 samples (2%)
 - 1600 samples (10%)
 - 3300 samples (20%)
- Original, 4096 pixels:
 - 800 samples (20%)
 - 1600 samples (40%)

\(^5\) http://dsp.rice.edu/cscamera
Compressed Sensing
Toy Example with Polynomials

How many samples are needed to identify polynomial of rank $N - 1$?

- **rank 0**: $f_0(x) = a_0 \quad \rightarrow \quad$ 1 sample sufficient to identify a_0

- **rank 1**: $f_1(x) = a_0 + a_1 x \quad \Rightarrow \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

\[y = A \cdot \begin{bmatrix} a_1 \\ a_0 \end{bmatrix} \]

\rightarrow 2 samples with $x_1 \neq x_2$ required $\rightarrow \quad a = A^{-1} \cdot y$
Toy Example with Polynomials

How many samples are needed to identify polynomial of rank $N - 1$?

- **rank 2:** $f(x) = a_0 + a_1 x + a_2 x^2$

$$
\Rightarrow \quad y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \\ a_0 \end{bmatrix} \rightarrow a = A^{-1} \cdot y
$$

- Linear equation system can be uniquely solved as long as matrix A is regular!

- Generally, N samples are needed to identify polynomial $f(x)$ of rank $N - 1$

- What happens, if polynomial has **maximal** rank $N - 1$, but only few coefficients are non-zero?

- Can polynomial be determined with less than N samples?
Toy Example with Sparse Polynomials

- Example with maximal rank $N - 1 = 2$ and single non-zero coefficient

- Possible polynomials: $f_0(x) = a_0, f_1(x) = a_1 x, f_2(x) = a_2 x^2$

- 2 unknown parameters (position and value of nonzero coefficient)
 → 2 instead of 3 samples suffice to identify $f_i(x)$

- However, problem becomes combinatorial: x_1 and x_2 must have different signs
 (otherwise, the straight line cannot be distinguished from parabola)
Compressed Sensing (CS) invented by mathematicians

- Meanwhile, CS found its way into various applications like
 - Source coding of sparse signals (sampling rates far below the classical theorem)
 - De-noising of images, audio, speech
 - Inpainting for images, audio
 - Radar signal processing (target detection)
 - Channel estimation (multipath propagation with few dominant paths)
Basic Principle of Compressed Sensing

Compressing sparse vector by linear projection

- Sparse vector $\mathbf{x} \in \mathbb{R}^N$ with at most $K \ll N$ nonzero components
- Compression by multiplying with $M \times N$ sensing matrix Φ, $M \ll N$
- Compression factor: $c = \frac{M}{N}$

Equation system is underdetermined (infinitely many solutions) and can only be uniquely solved with prior knowledge (sparsity of \mathbf{x})
Sparsity

- Vector x is denoted as K-sparse if it contains at most K nonzero elements.
- Common notation with ℓ_0 norm: $\|x\|_0 \leq K$.
- Example: Set of all 2-sparse signals in \mathbb{R}^3.

Generally union of $\binom{N}{K}$ subspaces to be considered.

ℓ_0 norm is no real norm in mathematical sense.
Sensing Matrix

How is matrix Φ to be designed such that M is as small as possible?

- Sparse sensing matrix will not work

$$y = \Phi \cdot x$$

- As positions of nonzero components are not known in advance, catching them with sparse sensing matrices is totally random (we have to be very lucky).

- Some information might not be captured in y with high probability.
Sensing Matrix

How is matrix Φ to be designed such that M is as small as possible?

- Dense sensing matrix: information has to be spread over all coefficients

$$y = \Phi \cdot x$$

- Compressed vector y contains linear superposition of K columns of Φ
Properties of Sensing Matrix Φ

Spark of Sensing Matrix Φ

Definition

The spark of a given matrix A is the smallest number of columns of A that are linearly dependent.

- If all K-sparse vectors x should be recoverable, two different vectors x_1, x_2 must not map onto the same y.
- Recovery is not possible if $y = \Phi x_1 = \Phi x_2 \Rightarrow \Phi (x_1 - x_2) = 0$.
- For any vector y, there exists at most one K sparse signal x with $y = \Phi x$ if and only if $\text{spark}(\Phi) > 2K$ (at least $2K + 1$ columns can be linear dependent.).
- Nullspace of Φ must not contain any $2K$-sparse vectors.
Properties of Sensing Matrix Φ

Restricted Isometry Property (RIP)

- Spark does not provide robustness against noise
- Euclidean distances should be preserved through projection
- A matrix Φ satisfies the restricted isometry property of order K if there exists a $\delta_K \in (0, 1)$ such that

$$ (1 - \delta_K) \leq \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \leq (1 + \delta_K) $$

holds for all K-sparse x.
- Replace x by $x_1 - x_2$: RIP preserves Euclidean distance between vectors!
Properties of Sensing Matrix Φ

Limited practical value of RIP and Spark

- RIP holds asymptotically for Gaussian i.i.d. matrices with overwhelming probability provided that $M \geq O(K \log \frac{N}{K})$

- Random Bernoulli matrices may work with overwhelming probability as well

- M random rows of an $N \times N$ Fourier matrix may also work appropriately

- However, proving spark and RIP property of Φ are NP-hard problems \Rightarrow infeasible in practice!

 - All $\binom{N}{2K}$ sets must be checked for linear independence

 - For small problem with $N = 300$ and $K = 30$: $\binom{300}{60} = 9 \cdot 10^{63}$ combinations to be checked!
Properties of Sensing Matrix Φ

Coherence

Definition

The coherence $\mu(\Phi)$ of a matrix Φ is the largest absolute inner product between any two columns ϕ_i, ϕ_j of Φ, i.e.

$$
\mu(\Phi) = \max_{1<i<j<N} \frac{|\langle \phi_i, \phi_j \rangle|}{\|\phi_i\|_2 \|\phi_j\|_2}
$$

- Can be checked in reasonable time (only projections between columns of sensing matrix are considered, not all possible signal vectors)

- Valid interval of coherence with Welch bound: $\mu(\Phi) \in \left[\sqrt{\frac{N-M}{M(N-1)}}, 1\right]$
Properties of Sensing Matrix Φ

Coherence

- Coherence represents lower bound for the spark:
 \[
 \text{spark}(\Phi) \geq 1 + \frac{1}{\mu(\Phi)}
 \]

- Suited sensing matrices have low coherence (columns shall be as orthogonal as possible)
 - Random Gaussian or Bernoulli matrices deliver good results
 - Deterministic matrices can be constructed and analyzed as well

- Coding equivalence: distance between code words should be as large as possible
Lectures

What is this course about?

1. Compressed Sensing
 - Sparse signals, single pixel camera, Magnetic Resonance Imaging (MRI)
 - Toy example with sparse polynomials
 - Norms (ℓ_0, ℓ_1, ℓ_2)
 - Compressed Sensing (CS)
 - Optimization problem
 - Greedy reconstruction algorithms
Reconstruction of Sparse Signals

- Remember: Compression of K-sparse vector $\mathbf{x} \in \mathbb{R}^N$ by linear projection with sensing matrix $\Phi \in \mathbb{R}^{M \times N}$

\[y = \Phi \cdot \mathbf{x} \]

- Equation system is underdetermined (infinitely many solutions) and can only be uniquely solved with prior knowledge (sparsity of \mathbf{x})

- Optimization problem: Find the sparsest solution $\hat{\mathbf{x}}$ that solves $\mathbf{y} = \mathbf{A} \hat{\mathbf{x}}$

\[\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \| \mathbf{x} \|_0 \quad \text{s.t.} \quad \mathbf{y} = \mathbf{A} \mathbf{x} \] (1)
Reconstruction of Sparse Signals

Optimal Solution

- Original problem is non-convex and NP-hard
- Optimal solution requires exhaustive search
 - Checking all $\binom{N}{K}$ K-sparse hypotheses, i.e. combination of K columns of Φ
 - For each hypothesis, amplitudes have to be estimated such that $y = \Phi \cdot x$, e.g. by least squares approach
 - Even for small problem with $N = 300$ and $K = 30$: $\binom{300}{30} = 1.7 \cdot 10^{41}$ combinations to be checked \implies infeasible!

- Alternative solutions required
Illustration of Different Norms for 2D Case

- General definition of ℓ_p norm

$$\ell_p(x) = \left(\sum_{i=1}^{N} |x_i|^p \right)^{1/p}$$

- ℓ_0 norm: number of nonzero elements
- ℓ_1 norm: sum of magnitudes
- ℓ_2 norm: sum of squares magnitudes
- $\ell_{0.5}$ norm
- ℓ_{∞} norm delivers largest magnitude of all elements:
 $$\|x\|_{\infty} = \max_j |x_j|$$

example for $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$
Graphical Illustration of Detection with ℓ_2 and ℓ_1 Norms

Estimate tuple (x_1, x_2) from observation $y = Ax = a_1 x_1 + a_2 x_2$

$$x_2 = \frac{1}{a_2} (y - a_1 x_1)$$

ℓ_2 norm

ℓ_2 norm solution is not sparse!

ℓ_2 norm solution is not sparse!

ℓ_2 norm solution is not sparse!

ℓ_1 norm

ℓ_1 norm solution is sparse!
Reconstruction with Different Norms for 2D Case

- Estimate tuple \((x_1, x_2)\) from observation \(y = Ax = a_1 x_1 + a_2 x_2\)

\[
x_2 = \frac{1}{a_2} (y - a_1 x_1)
\]

- Infinitely many solutions as equation is underdetermined!

- Constraint: \(\hat{x} = \text{argmin}_x \|x\|_p \text{ s.t. } y = Ax\)

 - Choose solution with minimal \(\ell_0\) norm
 \(\hat{x} = \text{argmin}_x \|x\|_0 \text{ s.t. } y = Ax\)

 - Choose solution with minimal \(\ell_1\) norm
 \(\hat{x} = \text{argmin}_x \|x\|_1 \text{ s.t. } y = Ax\)

 - Choose solution with minimal \(\ell_2\) norm
 \(\hat{x} = \text{argmin}_x \|x\|_2 \text{ s.t. } y = Ax\) (not sparse!)
Reconstruction Results for Different Norms for 2D Case

![Graph showing reconstruction results for different norms in a 2D case. The graph includes axes for x_1 and x_2, with values ranging from -1.5 to 1.5 for x_1 and -1 to 1 for x_2. Various curves and markers represent different norms, including ℓ_1, $\ell_{1.4}$, ℓ_2, ℓ_4, and ℓ_∞.]
Reconstruction of Sparse Signals

Near-optimal solution by convex relaxation

- Minimizing ℓ_1 norm provides optimal solution for almost all cases

$$\hat{x} = \arg\min_x \|x\|_1 \quad \text{s.t.} \quad y = \Phi \cdot x$$

- ℓ_1 norm leads to convex problem \rightarrow efficient solutions by convex optimization tools

- Modified problem formulations possible in the presence of noise

- Basis Pursuit Inequality Constraints (BPIC):

$$\hat{x} = \arg\min_x \|x\|_1 \quad \text{s.t.} \quad \|y - \Phi \cdot x\|_2 \leq \epsilon$$

- Lagrangian relaxation leads to Basis Pursuit DeNoising (BPDN), also known as LASSO (Least Absolute Shrinkage and Selection Operator):

$$\hat{x} = \arg\min_x \|x\|_1 + \lambda \|y - \Phi \cdot x\|_2$$

Reconstruction of Sparse Signals

Greedy algorithms

- Optimal reconstruction with ℓ_0 norm was NP-hard
- Relaxation to ℓ_1 norm enables application of convex optimization, but becomes infeasible for large problems as well
- Probabilistic graph based models (AMP: Approximate Message Passing) very attractive (but out of scope of this lecture)
- Heuristic greedy algorithms solving (1) approximately
 - Iterative reconstruction tries to minimize ℓ_0 norm
 - Low computational complexity, but suboptimal performance
Reconstruction of Sparse Signals

Orthogonal Matching Pursuit (OMP)

- Heuristic greedy algorithm approximates optimal solution iteratively
- Basic principle:
 1. Set residuum r to compressed vector y
 2. Choose column ϕ_i^* of sensing matrix Φ mostly correlated to residuum r
 3. Determine optimal weight \hat{x}_i, e.g. least squares solution
 4. Update residuum by subtracting contribution of \hat{x}_i from current residuum and continue with step 2 until
 - sparsity K of x has been reached (K has to be known a priori)
 - residuum r falls below defined threshold
- Further pursuit methods: Stage-wise OMP (StOMP), CoSaMP,
Reconstruction of Sparse Signals

Illustration of Orthogonal Matching Pursuit (OMP) for $K = 3$

$r_0 = y$

Φ

$\lambda_1 = \arg\max_{j=1...N} |\langle y, \phi_j \rangle|$

$r_0 = y$

$\lambda_1 = \arg\max_{j} |\langle y, \phi_j \rangle|$
Phase Transition

- Phase transition illustrates regions with reliable and unreliable reconstruction
- Reconstruction succeeds with overwhelming probability if there are enough measurements M for given sparsity K
- If M is not sufficiently large, reconstruction via OMP is nearly impossible
- Transition area:
 - recovery success depends heavily on realization of A and x
 - sharpens for larger problem dimension N
Example for Phase Transition with $N = 128$

- Basis Pursuit: $M \geq c \cdot K \log_2(1 + N/K)$ (black curve for $c = 1$)
Phase Transition for OMP with $N = 50$

- Relative broad transition area
Phase Transition for OMP with $N = 500$

- Relative transition area significantly smaller for larger N
Phase Transitions for OMP with $K = 8$ and different N

- Required number of measurements M increases with N for constant K.
- Nevertheless, compression ratio increases with N as M grows less than linear.

![Graph showing phase transitions for OMP with different N.](attachment:image.png)
Intermediate Summary

- Compressed Sensing allows compression of signals being sparse in some domain
- Compared to traditional compression techniques, complexity is shifted from encoder to decoder
- Sensing matrix has to fulfil certain constraints to ensure reconstruction
- Underdetermined linear equation system to be solved
 - Exploiting sparsity necessary to obtain unique solution
 - Due to sparsity constraint, optimization problem becomes NP hard
 - Relaxation to ℓ_1 norm turns optimization problem to become convex
 - We introduced greedy OMP algorithms for solving original problem