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Content Description - 1

In the last two decades the pervasion of our daily life by communication and multimedia
devices like smart phones, digital cameras or MP3 players grows at increasing speed.
The basic foundation of all devices is digital signal processing, especially the
representation of analog signals by bits and bytes. In order to keep storage and data rate
requirements at a moderate level, compression is an inevitable part of digital systems. It
removes redundant parts from the signal and represents these signals with as few bits as
possible. Thereby, lossy and lossless compression are distinguished. We call
compressible signals as being sparse.

Conventional strategies first sample the analog signal at high rate according to Shannon’s
famous sampling theorem and compress it afterwards. This provokes the question why
sampling itself cannot be directly perform the compression in order to avoid costly
sampling at high rate. In order to answer this question, the lectures will give an overview
of state-of-the-art sampling techniques and will focus on two different approaches.
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Content Description - 2

First, a technique called ’Compressed Sensing’ will be introduced allowing to compress
sparse signals in a very efficient way. After discussing some toy examples to illustrate the
underlying problem, the compression and its fundamental properties are introduced. Next,
the reconstruction step is explained for one simple exemplary algorithm, the Orthogonal
Matching Pursuit (OM) algorithm. In the second part, Shannon’s famous sampling
theorem will be revisited first. Next, the class of analog Finite Rate of Innovation (FRI)
signals will be introduced which can be sampled at rates much lower than stated by
Shannon. For reconstruction, the annihilating filter as one example of spectral estimation
algorithms will be presented. Comparing these approaches with classical compression
techniques like MP3, MPEG or H.265 shows that the complexity is shifted from the
encoder which becomes very simple to the decoder.

V. Kühn | Sampling and Reconstruction of Sparse Signals | 2 / 55



Institut für
Nachrichtentechnik

Lectures
What is this course about?

1 Compressed Sensing

• Sparse signals, single pixel camera, Magnetic Resonance Imaging (MRI)

• Toy example with sparse polynomials

• Norms (`0, `1, `2)

• Compressed Sensing (CS)

• Optimization problem

• Greedy reconstruction algorithms
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Lectures
What is this course about?

2 Sampling analog FRI signals

• Conventional sampling according to Shannon/Kotelnikov

• Sampling FRI signals using parametric description

• Spectral estimation by annihilating filter method

• Application to Particle Image Velocimetry

• Summary and Comparison of FRI and CS
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What we need

• Linear algebra

• Fourier and z-transformation

• Sampling theorem of Shannon

• Curiosity and interest
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Motivation

• Sparse signals allow exact description by few components (in certain domain /
subspace)−→ lossless compression (Huffman coding, run-length coding)

• Approximately sparse signals dominated by few large components−→ lossy
compression (rate-distortion theory)

• Rich area of applications: radar, sonar, medical (ultrasound), communications,
multimedia signal processing, . . .
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Sampling Sparse Signals

• Conventional approaches: sample at high rate and compress signal afterwards

• Audio signal processing (mp3, . . . )

• Video and image compression (MPEG, H.265, JPEG, . . . )

• Sampling according to Shannon requires sampling rate twice as high as signal
bandwidth (sufficient criterion, no necessary condition!)

• Questions:

• Why high rate sampling and successive compression?

• Can the sampling rate be reduced to perform compression directly?

• Is (perfect) reconstruction possible even for non-bandlimited signals?

• Yes, but at the expense of increased reconstruction complexity!
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Image Compression

• Natural images typically are not sparse ...
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Image Compression

• ... but they are approximately sparse in Wavelet-/DCT-/Fourierbasis1

Waveletbasis representation FFT-basis (clipped)

1many coefficients are almost zero → lossy compression
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Image Compression

• Reconstruction results

Original256× 256 ReconstructionM = 16384c = 1/4 ReconstructionM = 8192c = 1/8

• Many sophisticated algorithms for

• image compression (JPEG, JPEG 2000, ...)

• video compression (MPEG, H26x, ...)

• audio compression (AAC, MP3, ...)
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Magnetic Resonance Imaging (MRI)
Principle

• Medical imaging tool with inherently slow data acquisition process

• Temporal MRI signal directly samples the spatial frequency domain of the image

s(t) =
∫
R
m(~r)e−i2π~k(t)·~rdr

• Received signal s(t) equals Fourier transform of objectm(~r) sampled at the
spatial frequency ~k(t)

• Incoherent detection (energy detection similar to camera sensors)

• Measurement time per coefficient limited by physical constraints (max. amplitude
and max. slew-rate to avoid nerve stimulation)
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Magnetic Resonance Imaging (MRI)
Example 1: MRI of human head1

• Fewer measurements result in blurs, aliasing or random artifacts

• Using CS-techniques with random sampling yields better performance
1

Lustig, Donoho, Santos, Pauly: "Compressed Sensing MRI", IEEE Signal Processing Magazine, vol.25, no.2, pp.72-82, March 2008
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Magnetic Resonance Imaging (MRI)
Example 2: Logan Shepp test image2

original Fourier coefficients sampled along radial lines

minimum-energy reconstruction TV-norm minimization

2
Candes, Romberg, Tao: "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information", IEEE Transactions on

Information Theory, vol. 52, no. 2, pp.489-509, Feb. 2006
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Magnetic Resonance Imaging (MRI)
Example 3: Real MRI Images3

fully sampled 6× undersampled 6× undersampled with CS reconstruction

• CS allows for less measurements required for approximately same resolution

• → decreased measurement time

• → higher convenience for patients

3
Trzasko, Manduca: "Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic `0 minimization", IEEE Transactions on Medical

Imaging, vol. 28, no. 1, pp.106-121, Jan. 2009

V. Kühn | Sampling and Reconstruction of Sparse Signals | Compressed Sensing → Motivation 14 / 55



Institut für
Nachrichtentechnik

Single Pixel Camera4

• Image acquisition with only one photo-detector

• Detector acquires multiple pseudorandom linear projections via DMD per scene

• Beneficial if detectors are expensive

4
http://dsp.rice.edu/cscamera, DMD: Digital Micromirror Device, RNG: Random Number Generator
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Single Pixel Camera
Hardware-setup [http://dsp.rice.edu/cscamera]
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Single Pixel Camera
Some reconstruction results5

original, 16384 pixels 1300 samples (2%) 1600 samples (10%) 3300 samples (20%)

original, 4096 pixels 800 samples (20%) 1600 samples (40%)

5
http://dsp.rice.edu/cscamera
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Compressed Sensing
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Toy Example with Polynomials
How many samples are needed to identify polynomial of rank N − 1?

• Polynomial of rankN − 1

y = fN−1(φ) = x0 + x1φ+ x2φ
2 + · · ·+ xN−1φ

N−1

• rankN − 1 = 0: y = f0(φ) = x0 ∀φ ∈ R

−5 0 5

1.8

2

2.2

2.4

φ

y
=
f 0

(φ
)=

2

• 1 sample sufficient to identify x0
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Toy Example with Polynomials
How many samples are needed to identify polynomial of rank N − 1?

• rankN − 1 = 1: y = f1(φ) = x0 + x1φ

−6 −4 −2 0 2 4 6
−5

0

5

φ

y
=
f 1

(φ
)

• 2 samples with φ1 6= φ2 required for identifying straight line

yyy =
[
y1
y2

]
=
[
φ1 1
φ2 1

]
︸ ︷︷ ︸

ΦΦΦ

·
[
x1
x0

]
︸ ︷︷ ︸
xxx

−→ xxx = ΦΦΦ−1 · yyy
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Toy Example with Polynomials
How many samples are needed to identify polynomial of rank N − 1?

• rankN − 1 = 2: y = f2(φ) = x0 + x1φ+ x2φ2

=⇒ yyy =

y1
y2
y3

 =

φ2
1 φ1 1
φ2

2 φ2 1
φ2

3 φ3 1


︸ ︷︷ ︸

ΦΦΦ

·

x2
x1
x0


︸ ︷︷ ︸
xxx

−→ xxx = ΦΦΦ−1 · yyy

• Linear equation system can be uniquely solved as long as matrix ΦΦΦ is regular!

• Generally,N samples are needed to identify polynomial f(φ) of rankN − 1

• What happens, if polynomial has maximal rankN − 1, but only few coefficients
are non-zero?

• Can polynomial be determined with less thanN samples?
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Toy Example with Sparse Polynomials
Polynomial of maximal rank N − 1 = 2 and single non-zero coefficient

• (3
1
)

= 3 possible polynomials: f0(φ) = x0, f1(φ) = x1φ, f2(φ) = x2φ2

−6 −4 −2 0 2 4 6
−5

0

5

φ

y
=
f i

(φ
)

• 2 unknown parameters (position and value of nonzero coefficient)
→ 2 instead of 3 samples suffice to identify fi(φ)
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Toy Example with Sparse Polynomials
Polynomial of maximal rank N − 1 = 2 and single non-zero coefficient

• 2 samples lead to underdetermined equation system

yyy =
[
y1
y2

]
=
[
φ2

1 φ1 1
φ2

2 φ2 1

]
︸ ︷︷ ︸

ΦΦΦ

·

x2
x1
x0


︸ ︷︷ ︸
xxx

• Solution cannot be found by simple matrix inversion as ΦΦΦ is not quadratic

• Problem becomes combinatorial (φ1 and φ2 must have different magnitudes and
signs for unique identification)

• More sophisticated (nonlinear) detection algorithms are required!
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Compressed Sensing (CS) invented by mathematicians

many others
David Donoho, Stanford Emmanuel Candès, Stanford Terence Tao, UCLA

• Meanwhile, CS found its way into various applications like

• Source coding of sparse signals (sampling rates far below the classical theorem)

• De-noising of images, audio, speech

• Inpainting for images, audio

• Radar signal processing (target detection)

• Channel estimation (multipath propagation with few dominant paths)

• RFID tag detection

• ...
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Basic Principle of Compressed Sensing
Compressing sparse vector by linear projection

• Sparse vectorxxx ∈ RN with at mostK � N nonzero components

• Compression by multiplying withM ×N sensing matrix ΦΦΦ,M � N

• Compression factor: c = M/N

= ·

yyy = ΦΦΦ · xxx

• Equation system is underdetermined (infinitely many solutions) and can only be
uniquely solved with prior knowledge (sparsity ofxxx)
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Sparsity

• Vectorxxx is denoted asK-sparse if it contains at mostK nonzero elements

• Common notation with `0 norm6: ‖xxx‖0 ≤ K
• Example: Set of all 2-sparse signals in R3

1D subspaces 2D subspaces

−2 −1 0 1 2 −2

0

2
−2

0

2

x
y

z

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

6`0 norm is no real norm in mathematical sense.
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Sensing Matrix
How is matrix ΦΦΦ to be designed such that M is as small as possible?

• Sparse sensing matrix will not work

= ·

yyy ΦΦΦ xxx·=

• As positions of nonzero components are not known in advance, catching them with
sparse sensing matrices is totally random (we have to be very lucky).

• Some information might not be captured in yyy with high probability.
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Sensing Matrix
How is matrix ΦΦΦ to be designed such that M is as small as possible?

• Dense sensing matrix: information has to be spread over all coefficients

= ·

yyy ΦΦΦ xxx·=

• Compressed vector yyy contains linear superposition ofK columns of ΦΦΦ

• Compressed vector yyy should be unique for each sparse vectorxxx
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Properties of Sensing Matrix ΦΦΦ
Spark of Sensing Matrix ΦΦΦ

Definition
The spark of a given matrix ΦΦΦ is the smallest number of columns of ΦΦΦ that are linear
dependent.

• If allK–sparse vectorsxxx should be recoverable, two different vectorsxxx1,xxx2 must
not be mapped onto the same yyy

• Recovery is not possible if yyy = ΦxΦxΦx1 = ΦxΦxΦx2 ⇒ ΦΦΦ(xxx1 − xxx2) = 000

• For any vector yyy, there exists at most oneK sparse signalxxx with yyy = ΦxΦxΦx if and
only if spark(ΦΦΦ) > 2K (at least 2K + 1 columns can be linear dependent.).

• Nullspace of ΦΦΦ must not contain any 2K-sparse vectors
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Spark of Sensing Matrix ΦΦΦ
Example for sparse polynomial of maximal rank N − 1 = 2

• Polynomial with max. rankN − 1 = 2 and single non-zero coefficient (K = 1)

• Possible polynomials: f0(φ) = x0, f1(φ) = x1φ, f2(φ) = x2φ2

• 2 appropriate samples suffice to identify fi(φ)
• spark(ΦΦΦ) ≥ 2K + 1 = 3 required for unique identification

• ΦΦΦ =
[
φ2

1 φ1 1
φ2

2 φ2 1

]
=
[
0 0 1
1 1 1

]
−→ spark(ΦΦΦ) = 2 < 2K + 1

(straight line and parabola cannot be distinguished for φ1 = 0 and φ2 = 1)

• ΦΦΦ =
[
φ2

1 φ1 1
φ2

2 φ2 1

]
=
[
1 1 1
4 2 1

]
−→ spark(ΦΦΦ) = 3 = 2K + 1

(φ1 = 1 and φ2 = 2 ensure distinction of all three polynomials)
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Properties of Sensing Matrix ΦΦΦ
Restricted Isometry Property (RIP)

• Spark does not provide robustness against noise

• Euclidean distances should be preserved by projection

Definition
A matrix ΦΦΦ with unit-norm columns satisfies the restricted isometry property of orderK
if there exists a δK ∈ (0, 1) such that

(1− δK) ≤ ‖ΦxΦxΦx‖2
2

‖xxx‖2
2
≤ (1 + δK)

holds for allK-sparsexxx and matrices ΦΦΦ.

• Replacexxx byxxx1 − xxx2: RIP of order 2K preserves Euclidean distance between
vectors!
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Restricted Isometry Property (RIP)
Example 1 for sparse polynomial of maximal rank N − 1 = 2

• Choosing φ1 = 0 and φ2 = 1 delivers

ΦΦΦ1 =
[
φ2

1 φ1 1
φ2

2 φ2 1

]
=
[

0 0 1
1 1 1

]
→ ΦΦΦ1,norm =

[
0 0 1√

2
1 1 1√

2

]

•
[

0 0 1√
2

1 1 1√
2

]
·
[
x0
0
0

]
=
[

0
x0

]
→ ‖ΦΦΦ2,normxxx‖22 = ‖xxx‖22 = x2

0

•
[

0 0 1√
2

1 1 1√
2

]
·
[ 0
x1
0

]
=
[

0
x1

]
→ ‖ΦΦΦ2,normxxx‖22 = ‖xxx‖22 = x2

1

•
[

0 0 1√
2

1 1 1√
2

]
·
[ 0

0
x2

]
=
[

x2√
2

x2√
2

]
→ ‖ΦΦΦ2,normxxx‖22 = ‖xxx‖22 = x2

2
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Restricted Isometry Property (RIP)
Example 2 for sparse polynomial of maximal rank N − 1 = 2

• Choosing φ1 = 1 and φ2 = 2 delivers

ΦΦΦ2 =
[
φ2

1 φ1 1
φ2

2 φ2 1

]
=
[

1 1 1
4 2 1

]
→ ΦΦΦ2,norm =

[ 1√
17

1√
5

1√
2

4√
17

2√
5

1√
2

]

•
[ 1√

17
1√
5

1√
2

4√
17

2√
5

1√
2

]
·
[
x0
0
0

]
=
[ 1√

17
4√
17

]
x0 → ‖ΦΦΦ2,normxxx‖22 = ‖xxx‖22 = x2

0

•
[ 1√

17
1√
5

1√
2

4√
17

2√
5

1√
2

]
·
[ 0
x1
0

]
=
[ 1√

5
2√
5

]
x1 → ‖ΦΦΦ2,normxxx‖22 = ‖xxx‖22 = x2

1

•
[ 1√

17
1√
5

1√
2

4√
17

2√
5

1√
2

]
·
[ 0

0
x2

]
=
[ 1√

2
1√
2

]
x2 → ‖ΦΦΦ2,normxxx‖22 = ‖xxx‖22 = x2

2
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Properties of Sensing Matrix ΦΦΦ
Limited practical value of RIP and Spark

• RIP holds asympotically for Gaussian i.i.d. matrices with overwhelming probability
provided thatM ≥ O(K log N

K )

• Random Bernoulli matrices may work with overwhelming probability as well

• M random rows of anN ×N Fourier matrix may also work appropriately

• However, proving spark and RIP property of ΦΦΦ are NP-hard problems
⇒ infeasible in practice!

• All
(

N
2K

)
sets must be checked for linear independence

• For small problem withN = 300 andK = 30:(300
60
)

= 9 · 1063 combinations to be checked!
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Properties of Sensing Matrix ΦΦΦ
Coherence

Definition
The coherence µ(ΦΦΦ) of a matrix ΦΦΦ is the largest absolute inner product between any
two columnsφφφi,φφφj of ΦΦΦ, i.e.

µ(ΦΦΦ) = max
1<i<j<N

|〈φφφi,φφφj〉|
‖φφφi‖2 ‖φφφj‖2

• Can be checked in reasonable time (only projections between columns of sensing
matrix are considered, not all possible signal vectors)

• Valid interval of coherence with Welch bound: µ(ΦΦΦ) ∈
[√

N−M
M(N−1) , 1

]
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Properties of Sensing Matrix ΦΦΦ
Coherence

• Coherence represents lower bound for the spark:

spark(ΦΦΦ) ≥ 1 + 1
µ(ΦΦΦ)

• Suited sensing matrices have low coherence (columns shall be as “orthogonal as
possible”)

• Random Gaussian or Bernoulli matrices deliver good results

• Deterministic matrices can be constructed and analyzed as well

• Coding equivalence: distance between code words should be as large as possible
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Coherence
Example for sparse polynomial of maximal rank N − 1 = 2

• Sensing matrix ΦΦΦ1,norm =
[
0 0 1√

2
1 1 1√

2

]

µ(ΦΦΦ1,norm) = max
{

1 , 1√
2
,

1√
2

}
= 1

• Sensing matrix ΦΦΦ2,norm =
[ 1√

17
1√
5

1√
2

4√
17

2√
5

1√
2

]

µ(ΦΦΦ2,norm) = max
{ 9√

85
,

5√
34
,

3√
10

}
= 9√

85
≈ 0.9762
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Coherence
Free Example for minimal coherence

• In our example, three column vectors in 2-dimensional space

• Angle between any pair of vectors shall be as large as possible→ ∆ϕ = 2π
3

• ΦΦΦ =
[
1 cos(2π/3) cos(4π/3)
0 sin(2π/3) sin(4π/3)

]
• µ(ΦΦΦ) = max{0.5 , 0.5, 0.5} = 0.5

(Welch lower bound)

• Spark equals coherence:
spark(ΦΦΦ) = 1 + 1

0.5 = 3
−1 0 1 2−2

−1

0

1

2

∆ϕ
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Lectures
What is this course about?

1 Compressed Sensing

• Sparse signals, single pixel camera, Magnetic Resonance Imaging (MRI)

• Toy example with sparse polynomials

• Norms (`0, `1, `2)

• Compressed Sensing (CS)

• Optimization problem

• Greedy reconstruction algorithms
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Reconstruction of Sparse Signals

• Remember: Compression ofK-sparse vectorxxx ∈ RN by linear projection with
sensing matrix ΦΦΦ ∈ RM×N

= ·

yyy = ΦΦΦ · xxx

• Equation system is underdetermined (infinitely many solutions) and can only be
uniquely solved with prior knowledge (sparsity ofxxx)

• Optimization problem: Find the sparsest solution x̂̂x̂x that solves yyy = Φx̂Φx̂Φx̂
x̂̂x̂x = argmin

xxx
‖xxx‖0 s.t. yyy = ΦxΦxΦx (1)
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Reconstruction of Sparse Signals
Optimal Solution

• Original problem is non-convex and NP-hard

• Optimal solution requires exhaustive search

• Checking all
(

N
K

)
K-sparse hypotheses, i.e. combination ofK columns of ΦΦΦ

• For each hypothesis, amplitudes have to be estimated such that yyy = ΦxΦxΦx,
e.g. by least squares approach

• Requires each time pseudo inversion ofM ×K submatrix of ΦΦΦ

• Even for small problem withN = 300 andK = 30:(300
30
)

= 1.7 · 1041 combinations to be checked =⇒ infeasible!

• Alternative solutions required
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Illustration of Different Norms for 2D Case

• General definition of `p norm

`p(xxx) =
(

N∑
i=1
|xi|p

)1/p

• `0 norm: number of nonzero elements

• `1 norm: sum of magnitudes

• `2 norm: sum of squares magnitudes

• `0.5 norm

• `∞ norm delivers largest magnitude of all elements:
‖xxx‖∞ = maxj |xj |

x1

x2

example forxxx =
[
x1 x2

]T
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Graphical Illustration of Detection with `2 and `1 Norms

Estimate tuple (x1, x2) from observation y = ΦxΦxΦx = φ1x1 + φ2x2

x2 = 1
φ2

(y − φ1x1)

`2 norm solution is not sparse! `1 norm solution is sparse!
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Reconstruction with Different Norms for 2D Case

• Estimate tuple (x1, x2) from observation y = ΦxΦxΦx = φ1x1 + φ2x2

x2 = 1
φ2

(y − φ1x1)

• Infinitely many solutions as equation is underdetermined!

• Constraint: x̂xx = argminxxx ‖xxx‖p s.t. y = ΦxΦxΦx

• Choose solution with minimal `0 norm
x̂xx = argminxxx ‖xxx‖0 s.t. y = ΦxΦxΦx

• Choose solution with minimal `1 norm
x̂xx = argminxxx ‖xxx‖1 s.t. y = ΦxΦxΦx

• Choose solution with minimal `2 norm
x̂xx = argminxxx ‖xxx‖2 s.t. y = ΦxΦxΦx (not sparse!)

x1

x2
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Reconstruction Results for Different Norms for 2D Case

• Reults obtained with CVX optimization toolbox
from Boyd with Matlaba

N = 2;
Phi = [0.5 1];
y = 1;
p = 1;

cvx_begin
variable x(N)
minimize(norm(x,p)));
subject to
y == Phi*x;

cvx_end

a
http://cvxr.com/cvx/download, http://github.com/cvxr/cvx

−1 0 1

−1

0

1 `1`1.4̀2̀ 4̀ ∞

x1

x
2
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Reconstrution of Sarse Signals
Near-optimal solution by convex relaxation

• Minimizing `1 norm provides optimal solution for almost all cases

x̂xx = argmin
xxx
‖xxx‖1 s.t. yyy = ΦΦΦ · xxx

• `1 norm leads to convex problem→ efficient solutions by convex optimization tools

• Modified problem formulations possible in the presence of noise

• Basis Pursuit Inequality Constraints (BPIC):
x̂xx = argmin

xxx
‖xxx‖1 s.t. ‖yyy −ΦΦΦ · xxx‖2 ≤ ε

• Lagrangian relaxation leads to Basis Pursuit DeNoising (BPDN), also known as
LASSO (Least Absolute Shrinkage and Selection Operator):

x̂xx = argmin
xxx
‖xxx‖1 + λ‖yyy −ΦΦΦ · xxx‖2
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Reconstruction of Sparse Signals
Greedy algorithms

• Optimal reconstruction with `0 norm was NP-hard

• Relaxation to `1 norm enables application of convex optimization, but becomes
infeasible for large problems as well

• Probabilistic graph based models (AMP: Approximate Message Passing) very
attractive (but out of scope of this lecture)

• Greedy algorithms solving (1) approximately

• Iterative reconstruction tries to minimize `0 norm

• Low computational complexity, but suboptimal performance
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Reconstruction of Sparse Signals
Orthogonal Matching Pursuit (OMP)

• Greedy algorithm approximates optimal solution iteratively

• Basic principle:

1 Set residuum rrr to compressed vector yyy

2 Choose columnφφφ∗i of sensing matrix ΦΦΦ mostly correlated to residuum rrr

3 Determine optimal weight x̂i, e.g. least squares solution

4 Update residuum by subtracting contribution of x̂i from current residuum and
continue with step 2 until

– sparsityK ofxxx has been reached (K has to be known a priori)

– norm of residuum rrr falls below defined threshold

• Further pursuit methods: Stage-wise OMP (StOMP), CoSaMP, . . .
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Reconstruction of Sparse Signals
Illustration of Orthogonal Matching Pursuit (OMP) for K = 3

rrr0 = yyy ΦΦΦ φφφλ xλ yyyλ = φφφλxλ rrr1

ΦΦΦλ xxxλ yyyλ = ΦΦΦλxxxλ rrr2rrr1 ΦΦΦ1

rrr2 ΦΦΦ2

λ3 = argmaxj /∈λ |〈yyy,φφφj〉|

ΦΦΦλ xxxλ yyyλ = ΦΦΦλxxxλ

rrr3 = yyy − yyyλ
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Phase Transition

• Phase transition illustrates regions with reliable and unreliable reconstruction

• Reconstruction succeeds with overwhelming probability if there are enough
measurementsM for given sparsityK

• IfM is not sufficiently large, reconstruction via OMP is nearly impossible

• Transition area:

• recovery success depends heavily on realization of ΦΦΦ andxxx

• sharpens for larger problem dimensionN
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Example for Phase Transition with N = 128

• Basis Pursuit: M ≥ c ·K log2(1 +N/K) (black curve for c = 1)
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Phase Transition for OMP with N = 50

• Relative broad transition area
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Phase Transition for OMP with N = 500

• Relative transition area significantly smaller for largerN
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Phase Transitions for OMP with K = 8 and different N

• Required number of measurementsM increases withN for constantK

• Nevertheless, compression ratio increases withN asM grows less than linear
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Intermediate Summary

• Compressed Sensing allows compression of signals being sparse in some domain

• Compared to traditional compression techniques, complexity is shifted from
encoder to decoder

• Sensing matrix has to fulfil certain constraints to ensure reconstruction

• Underdetermined linear equation system to be solved

• Exploiting sparsity necessary to obtain unique solution

• Due to sparsity constraint, optimization problem becomes NP hard

• Relaxation to `1 norm turns optimization problem to become convex

• We introduced greedy OMP algorithms for solving original problem
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