
Ellipsoid  One−sheeted Hyperboloid Hyperbolic Paraboloid Circular ConeCircular Paraboloid
This work is partially supported by EMF2002−04402−C02−01
Curvas y superficies: fundamentos, algoritmos y aplicaciones 

An Example of the Generalized
Offset of a Surface

Rationality and Parametrization Algorithm

Let P( t̄ ) be a rational parametrization of a surface V (or in general a hypersurface)
and N ( t̄ ) = (N1( t̄ ), N2( t̄ ), N3( t̄ )) its associated normal vector.

Offset Rationality Characterization by means of two notions

↙ ↘

Rational Pythagorean Hodograph (rph) Reparametrizing surface (GP(V))

↓ ↓
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Parametrization Algorithm

Given: a proper rational parametrization P(t̄) of V in IK2 (for curves) or IK3 (for
surfaces) and a matrix A defining a direct isometry.
Decide: whether the components of OA

d
(V) are rational.

Determine: (in the affirmative case) a rational parametrization of each component
of OA

d
(V).

1. Compute the normal vector N (t̄) of P(t̄)

2. If ||N || ∈ IK(t̄) then return � OA

d
(V) has two rational components

parametrized by P ± d

||N||
N · A �.

3. Determine GP(V), and decide whether GP(V) is rational. (In this situation
GP(V) is irreducible).

4. If GP(V) is not rational then return � Od(V) has no rational component �
else

4.1. Determine a rational parametrization R = (R̃, R) of GP(V), where
R̃ ∈ IK(t̄) or IK(t̄)2 depending on whether V is a curve or a surface,
respectively.

4.2. If V is a plane curve then return � OA

d
(V) is a rational curve

parametrized by Q = P(R̃) + 2 d R

N2(R̃)(R2+1)
N (R̃) · A, where N = (N1, N2)

�.

4.3. If V is a surface then return � OA

d
(V) is a rational surface parametrized

by Q = P(R̃) + d R

(N1(R̃) R+N2(R̃))
N (R̃) · A, where N = (N1, N2, N3) �.

Reference for these results: [2]

Genus Formula for the Curve Case

Main difficulty: the rationality of the original variety is not preserved (in general)
when the offset is considered. This phenomenon implies that the genus of the orig-
inal curve is not preserved when offseting.

Let C̄ be an irreducible projective plane curve over IK of degree n, satisfying
that (1) all the singularities of C̄ are affine and ordinary, (2) the line at infinty
y0 = 0 is not tangent to C̄, (3) the curve C̄, the tangent lines to C̄ at the flex
points, and the tangent lines to C̄ at the singularities do not pass through the
cyclic points. Suppose that OA

d
(C) is irreducible and simple (see [9] for the notion

of simple component). Let r1, . . . , rs be the multiplicities of its singular points.
Then the generalized offset at distance d has genus

g(OA
d
(C)) = 2n2

− 4n + 1 − 2

s∑

j=1

rj(rj − 1).

Applying this result we obtain that generalized offsets to ellipses and hyperbolas
are elliptic curves.

Reference for these results: [3]
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What is an offset?
Suppose that a robot moves around in a room filled with several obstacles. If the
robot moves along the curve C, and it is contained in a circle of radius d, then the
region swept by the robot is described by the d-offset curve of C, as shown in the
figure on the left. Thus, to avoid collisions when planning a trajectory one may
compute the offset curve. The offset is closely related to the envolvent of a system
of d-circles centered at the points of the curve C.

Similar constructions appear in many applications, such as NC-machining, fea-
ture recognition (medial axes transform), and many others (see [4] for a survey).

This offsetting proccess can also be applied to surfaces. Offset curves or sur-
faces are, generally speaking, far more complicated than their generating objects.
Pictures at the bottom of the poster show a portion of the offset surface generated
by some quadrics.

Offset Atlas

The following table illustrates some properties of the offset, com-
pared with the generating object.

Generating object Offset
Name Degree Number Degree Number

of terms of terms

Curves

Circle 2 3 4 4
Ellipse 2 3 8 15
Hyperbola 2 3 8 12
Parabola 2 2 6 13
Conchoid 3 3 8 24
Cuspidal Cubic 3 2 8 21
Trisectrix 3 4 10 35
Folium 3 3 14 114
Epitrochoid 4 7 10 36
Ramphoid 4 5 14 105
Lemniscate 4 5 12 28
Cardioid 4 6 8 25
Trifolium 4 5 14 63
x

4 + y
4

− y
2 4 3 24 91

Quadrics

Sphere 2 3 4 7
Cone 2 3 8 29
Circular Cylinder 2 3 4 4
Elliptic Cylinder 2 3 8 15
Circular Ellipsoid 2 4 8 35
Generic Ellipsoid 2 4 12 84
1-sht. Elliptic Hyperboloid 2 4 12 84
1-sht. Circular Hyperboloid 2 4 8 29
2-sht. Elliptic Hyperboloid 2 4 12 84
2-sht. Circular Hyperboloid 2 4 8 29
Circular Paraboloid 2 3 6 26
Elliptic Paraboloid 2 3 10 69
Hyperbolic Paraboloid 2 3 10 71

Our web page www2.uah.es/fsegundo/OffsetAtlas (under construc-
tion) will soon contain implicit and parametric equations, table of
properties, and pictures, for many examples.

Offset Degree Formulas for Plane Curves

Implicit case
Let C be a real irreducible plane algebraic curve defined by the polynomial

f(y1, y2) ∈ R[y1, y2]. Let F (y1, y2, y3) be the homogenization of f wrt y3, and let
F1, F2 be the partial derivatives of f w.r.t. y1 and y2 respectively. Let n = deg(C).

Formula with resultants
We consider a certain auxiliary curve S, defined by:

S(y1, y2, y3) = (F 2
1 + F 2

2 )(y1 − ky2)
2 − d2(F1 − kF2)

2

Let PP{k,d} denotes the primitive part w.r.t. {k, d}. Let C not be a line. Then, for
d ∈ R \ {0} (or d ∈ R \ {0, r} if C is a circle of radius r) it holds that

deg(Od(C)) = deg{y1,y3}

(

PP{k,d} (Resy3
(F, S))

)

This is a deterministic formula for the offset degree, well suited for computation.

Formula with the hodograph
The hodograph curve to C is the curve H defined by the polynomial H(y1, y2, y3) =
F 2

1 + F 2
2 . Let F∞ be the set of intersection points at infinity of C and H, and let

Fa be the affine singular locus of C. For p = (a : b : 0) ∈ F∞, with b 6= 0,
let AP = min

(

multp(C, H), multp(C, y2
3F 2

1 )
)

(If b = 0, use y2
3F

2
2 instead of y2

3F
2
1 ).

Then, for d ∈ R \ {0} (or d ∈ R \ {0, r} if C is a circle of radius r) it holds that:

deg(Od(C)) = 2deg(C) −
∑

p∈Singa(C)

multp(C, H) −
∑

p∈F∞

Ap

Note: alternative works on this topic can be found in [1].

Rational case
Let C be a real rational plane curve with parametrization (X(t)/W (t), Y (t)/W (t)),
where gcd(X, Y, W ) = 1, and let

N1 = WX ′ − W ′X, N2 = WY ′ − W ′Y ,
N = N2

1 + N2
2 , n = max(degt(X), degt(Y ), degt(W )),

τ = max(degt(N1), deg(N2)),
µ = degt(gcd (N gcd(X, Y )2, W 2 gcd(N1, N2)

2)).

Then, for d ∈ R \ {0} (or d ∈ R \ {0, r} if C is a circle of radius r) it holds that

deg(Od(C)) = 2n + 2τ − µ

This provides a simpler alternative to the previous formula presented by Farouki
and Neff ([5]).

Reference for these results: [7]
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Offset Degeneration

For some values of the distance, as illustrated in the figure on the
left for the case of the torus, the offset degenerates: one component
of the offset is not a hypersurface. In the classical setting this occurs
only for a finite number of distances, that can be algorithmically de-
termined from the generating object. For this result, the extension
to generalized offsets, and the associated algorithm see [9].

Classical and Generalized Offsets
Let P(t̄) be a parametrization of a hypersurface V, and let N (t̄) be the associated

normal vector.

Classical d-Offset Parametrization Generalized d-Offset Parametrization

Let A ∈ O+(n) be a direct isometry.

P(t̄) ±
d

‖N (t̄)‖
N (t̄) P(t̄) ±

d

‖N (t̄)‖
N (t̄) · A

For a formal definition of the (generalized) offset, covering the implicit case, see
([9]). There are other notions of offset, such as the general offsets (see [6]), geodesic
offsets, etc.

Ongoing Work
Our next goal is to extend the degree formulae to the case of offsets of rational

surfaces in three dimensional space, and, more generally, offsets of hypersurfaces.
The general strategy remains the same: if Σ is a surface, we study the degree of
its offset Od(Σ) by means of the intersection with a generic line. By means of
the parametrization of Σ the problem can be reduced to a plane curve intersec-
tion problem, between some analogues of of the auxiliary curve S. This leads to
a temptative degree formula for rational surfaces which only involves univariate
resultants and gcds. This formula has been verified to hold in the case of quadrics,
but there are still some details missing in the proof.

Two−sheeted Hyperboloid
All the offsets shown here are rational (the cone offset has two rational componentes). For a complete analysis for the (generalized) offsets of quadrics see [8]. This generalized offset is also rational.

Rationality of the offset for some Quadrics


