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Abstract
The conchoid of a surface F with respect
to a given fixed point O (focus) is roughly
speaking the surface obtained by increas-
ing the radius function with respect to O by
a constant. We study real rational ruled
surfaces and prove that their conchoids
possess real rational parametrizations, in-
dependently on the focus.
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Conchoid
The conchoid is a classical geometric con-
struction and dates back already to the
ancient Greeks.
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The conchoid D of C with respect to O at
distance d is the set of points defined by,

D = {Q ∈ OP with P ∈ C, and QP = d}.

The definition of a conchoid surface to a
given surface F in space with respect to
a given point O and distance d follows
analogous lines. For an analytic represen-
tation it is convenient to choose O as the
origin. Using a representation of a surface
F in terms of polar coordinates f(u, v) =

r(u, v)k(u, v) with ‖k‖ = 1, its conchoid
is obtained by

g(u, v) = (r(u, v)± d)k(u, v). (1)

For a more algebraically definition see [2].

Ruled Surface
A ruled surface F carries a one-parameter
family of straight lines, thus admits a
parametric representation

f(u, v) = c(u) + v e(u),

where c(u) is called directrix curve and
e(u) is a direction vector field of F ’s gener-
ating lines.
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Conchoids of Rational Ruled Surfaces
Theorem: The conchoid surface G of a rational ruled surface F in R3 is
rational and real rational parametrizations are constructed explicitly.

Sketch of proof: Let a rational ruled sur-
face F be given by f(u, v) = c(u) + ve(u),
with c, e rational. In order to find a ratio-
nal polar representation of F with respect
to the origin, we investigate the squared
length ‖f‖2 of F . With ‖f‖ = x1

x0
and

v = x2

x0
it reads

x2
0c2 + 2x0x2c · e + x2

2e2 − x2
1 = 0. (2)

Equation (2) defines a one parameter fam-
ily of conics A(u) ∈ P2.
It can be proved that there exist ratio-
nal functions x0(u), x1(u) and x2(u) which
satisfy (2) identically for all u, see [3].
Choose c as the footpoint curve of F then
(2) reads Lx2

0 +Mx2
1 +Nx2

2 = 0 and so the
rational curve x(u) = (x0, x1, x2)(u) can be
constructed explicitly by investigating the

zeros of the polynomials L(u),M(u) and
N(u), see [1].
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For some surfaces ‖e(u)‖ is rational.
Reparametrize so that ∀u : ‖e(u)‖ =

1 then A(u) share two common points.
Stereographic projections with centers on
x lead to a rational parametrization of (2)
and thus to a rational polar parametriza-
tion of F .

Plane
The plane F : z = 1 is represented by the
radius function r(u, v) = 1/ sin v and

k(u, v) = (cosu cos v, sinu cos v, sin v).

Thus the conchoid surface G of the plane
F admits a trigonometric parametrization

g(u, v) =
1 + d sin v

sin v
k(u, v),

and an implicit equation of G reads
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G : z2(x2 + y2 + z2)− 2z(x2 + y2 + z2) + x2 + y2 + z2(1− d2) = 0.

Plücker Conoid
The Plücker conoid F can be generated
in the following way. Rotate the x-
axis around z and superimpose this ro-
tation by the translation (0, 0, sin 2u) in z-
direction. To obtain a non trivial case we
translate the surface and get a trigono-
metric parametrization of F ,

f(u, v) = (v cosu, v sinu+ 1, sin 2u+ 2).
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Hyperbolic Paraboloid
A hyperbolic paraboloid F can be gen-
erated in the following way. Choose the
lines (u, 1, u) and (u,−1,−u) as directri-
ces of F . We translate again to get a poly-
nomial parametrization of F ,

f(u, v) = (u, v, uv + 1).
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