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Motivation

Motivated on the notion of generalized inverse introduced by Moore and Penrose, Drazin,
in [3], introduced the notion of Drazin inverse in the more general context of rings and
semigroups. For matrices, Drazin inverse is defined as follows. Let A be an square matrix
over a field, then the Drazin index of A is the smallest non-negative integer k such that
rank(Ak) = rank(Ak+1); let us denote it by index(A). In this situation, the Drazin inverse
of A is the unique matrix satisfying the following matrix equations:

Aindex(A)+1 ·X = Aindex(A)

A ·X = X · A (1)
X · A ·X = X.

Many authors have analyzed the computation of the Drazin inverse, [1], [2]. The problem
has been approached mainly for matrices with complex numbers. Nevertheless, in a second
stage, different authors have addressed the problem of computing Drazin inverses of matrices
over other coefficients domains as rational function fields, see [4], [5], [6]. This led us to
raising the following challenge:

Problem: We want to compute the Drazin inverses of matrices whose entries are ele-
ments of a finite transcendental field extension of a computable field.

Our Results

For this purpose, we reduce the computation of Drazin inverses over certain computable
fields to the computation of Drazin inverses of matrices with rational functions as entries.
As a consequence, we derive a symbolic algorithm. The algorithm is applied to matrices
over the field of meromorphic functions, in several complex variables, on a connected domain
and to matrices over the field of Laurent formal power series. Essentially, this algorithmic
method applies symbolic computation to determine the Drazin inverse via specializations,
and reduces the problem to the computation, via Gröbner bases, of Drazin inverse matri-
ces with multivariate rational functions as entries. Furthermore, we show how to relate the
specialization of the Drazin inverse of a matrix, with meromorphic function entries, and the
Drazin inverse of the specialization.
The results mentioned above have been developed in the papers [4] and [5].

More precisely, given a matrix A, the idea consists in the following four steps (see Fig. 2):

1. [Specialization step] first we associate to A a matrix A∗ whose entries are rational functions
in several variables;

2. [Inverse computation step] we compute the Drazin inverse of A∗ via Gröbner bases, (see
Algorithm 1 in Fig. 1);

3. [Specialization Test] we check when A specializes properly. More precisely, we proved the
existence, and actual computation, of a multivariate polynomial (that we call evaluation
polynomial), such that if it does not vanish it concludes that A specializes properly.

4. [Specialization of the inverse step] finally, in case of affirmative answer of the test of step
3, we get the Drazin inverse of A from the Drazin inverse of A∗.
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An Example

Let t = (cos (z) , ez) and w = (w1, w2). Let

A(t) =


0 0 2 ez cos (z)

2 cos (z) e−z 2 e−z 2 − e−z

3 cos (z) e−z 3 e−z 6 e−z

 ∈ Mn×n(C(t)).

We want to compute the Drazin inverse D(A) of A.
For this purpose, we first associate to A a matrix A∗ ∈ M3×3(C(w)).
[Specialization step]: By replacing w1 := cos (z) , w2 := ez we get

A∗(w) =


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 ∈ Mn×n(C(w))

[Inverse computation step]: Applying Algorithm 1 in Step 2 we get

D(A∗)(w) =


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
.

[Specialization Test]: we get the evaluation polynomial

EvalPolA,A∗(w) = 144w2w1(w2w1 − 1)(w1w2 + 1) ∈ C[w].

and we evaluate it at t to get T ((z)) = 144ez cos(z)(ez cos(z)− 1)(ez cos(z) + 1). Taking
z0 = π, we get that K = T (t(π)) = −144eπ(e2π − 1) ̸= 0, and hence Algorithm returns
affirmative answer c = 1.
[Specialization of the inverse step]: finally, replacing w by t in the Drazin inverse of A∗, we
get the Drazin inverse of A:

D(A∗) =


−4 (ez)3 cos(z)2

3 (cos(z)4(ez)4−2 cos(z)2(ez)2+1)

−4 (ez)3 cos(z)

3 (cos(z)2(ez)2−1)
2

3 (cos(z)2(ez)2+5)(ez)3 cos(z)
9 (cos(z)2(ez)2−1)

2

(cos(z)2(ez)2+3)ez cos(z)
3 (cos(z)2(ez)2−1)

2

(cos(z)2(ez)2+3)ez

3 (cos(z)2(ez)2−1)
2

−(5 cos(z)2(ez)2+3)ez

9 (cos(z)2(ez)2−1)
2

ez cos(z)

2 (cos(z)2(ez)2−1)
ez

2 (cos(z)2(ez)2−1)
−ez

3 (cos(z)2(ez)2−1)

 .
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